
IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000 1

Design, Implementation and Deployment of the
iKP Secure Electronic Payment System
Mihir Bellare, Juan A. Garay, Ralf Hauser, Amir Herzberg, Hugo Krawczyk,
Michael Steiner, Gene Tsudik, Els Van Herreweghen, Michael Waidner

Abstract— This paper discusses the design, implementa-
tion and deployment of a secure and practical payment sys-
tem for electronic commerce on the Internet. The system is
based on the iKP family of protocols – i = 1, 2, 3 – developed
at IBM Research. The protocols implement credit card-
based transactions between buyers and merchants while the
existing financial network is used for payment clearing and
authorization. The protocols are extensible and can be read-
ily applied to other account-based payment models, such as
debit cards. They are based on careful and minimal use of
public-key cryptography and can be implemented in either
software or hardware. Individual protocols differ in both
complexity and degree of security.

In addition to being both a pre-cursor and a direct an-
cestor of the well-known SET standard, iKP-based payment
systems have been in continuous operation on the Internet
since mid-1996. This longevity – as well as the security and
relative simplicity of the underlying mechanisms – make the
iKP experience unique. For this reason, this paper also re-
ports on, and addresses, a number of practical issues arising
in the course of implementation and real-world deployment
of a secure payment system.

Keywords—Electronic commerce, payment systems, credit
& debit cards, multi-party security, public key cryptogra-
phy.

Work was done while all authors were with the IBM Research Di-
vision.

Mihir Bellare, Department of Computer Science & Engineering,
Mail Code 0114, University of California at San Diego, 9500 Gilman
Drive, La Jolla, CA 92093, USA. E-mail: mihir@cs.ucsd.edu.

Juan A. Garay, Bell Labs – Lucent Technologies, 600 Moun-
tain Ave, Murray Hill, NJ 07974, USA. E-mail: garay@research.
bell-labs.com.

Ralf Hauser, McKinsey & Co, Alpenstr. 3, CH-8065 Zürich,
Switzerland. E-mail: hauser@acm.org

Amir Herzberg, IBM Research - Haifa Lab (Tel Aviv Office), 2
Weizmann st., Tel Aviv, Israel. Email: amir@il.ibm.com,

Hugo Krawczyk, Department of Electrical Engineering, Technion,
Haifa 32000, Israel, and IBM T.J. Watson Research Center, New
York, USA. Email: hugo@ee.technion.ac.il

Michael Steiner, Fachbereich Informatik, Universität des Saarlan-
des, D-66123 Saarbrücken, Germany, and IBM Zurich Research Lab-
oratory, Rüschlikon, Switzerland. E-mail: steiner@acm.org

Gene Tsudik, USC Information Sciences Institute, Marina del Rey,
CA 90292, USA. E-mail: gts@isi.edu

Els Van Herreweghen, IBM Research Laboratory, Säumerstrasse 4,
CH-8803 Rüschlikon, Switzerland. E-mail: evh@zurich.ibm.com,

Michael Waidner, IBM Research Laboratory, Säumerstrasse 4, CH-
8803 Rüschlikon, Switzerland. E-mail: wmi@zurich.ibm.com,

Appeared in the IEEE Journal of Selected Areas in Communica-
tions, Vol 18, No. 4, April 2000. Part of this work was presented
at the First USENIX Workshop on Electronic Commerce, New York,
July, 1995

c© 2000 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or pro-
motional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted compo-
nent of this work in other must be obtained from the IEEE.

I. Introduction and Overview

AT this day and age it is hardly necessary to justify, or
stress the importance of, electronic commerce. Suffice

it to say that it has been rapidly gaining momentum since
early nineties, and has been equally appealing to on-line
merchants, consumers and payment providers.

There is a widespread agreement that to enable elec-
tronic commerce one needs the means for secure electronic
payments. Indeed, the appeal of electronic commerce with-
out electronic payment is limited. Moreover, insecure elec-
tronic payment methods are more likely to impede, than
to promote, electronic commerce. Thus, we begin with the
premise that security for electronic payments is of the ut-
most importance.

In this paper we present and discuss a family of se-
cure electronic payment protocols – iKP (i-Key-Protocol,
i = 1, 2, 3). These protocols are compatible with the ex-
isting card-based business models and payment system in-
frastructures. They involve three parties: the buyer (who
makes the actual payment), the merchant (who will re-
ceive the payment) and the acquirer gateway (who acts as
an intermediary between the electronic payment world and
the existing payment infrastructure, and authorizes trans-
actions by using the latter). Hereafter, we will refer to the
acquirer gateway as simply the acquirer.

Within this framework we focus on the credit card pay-
ment model since it has been the most popular thus far
and likely to remain so in the near future. However, other
account-based payment models (such as debit cards) are
quite similar to the credit card model from technical and
security viewpoints, and are thus easily supported by iKP.

All iKP protocols are based on public-key cryptography,
but they vary in the number of parties (out of the three
involved) that possess individual public key-pairs and can
thus generate digital signatures. This number is reflected
in the name of the individual protocols: 1KP, 2KP, and
3KP. The iKP protocols offer increasing levels of security
and sophistication as the number of parties who possess
own public key-pairs increases.

The simplest protocol, 1KP, requires only the acquirer
to possess a public key-pair. Buyers and merchants only
need to have authentic copies of the acquirer’s public key,
reflected in a public key certificate. This involves a minimal
public key infrastructure (PKI) to provide certificates for a
small number of entities, namely, the acquirers. This type
of a PKI can be operated, for example, by a large credit
card company. In the 1KP setting, buyers are authen-
ticated on the basis of their credit card numbers and op-
tional secret PINs. Payments are authenticated by commu-

2 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

nicating the credit card number and optional PIN appropri-
ately encrypted under the acquirer’s public key, and crypto-
graphically bound to relevant transaction information (pur-
chase amount, identities, etc.). This prevents fraudulent
merchants from collecting credit card numbers and creating
fraudulent payments.1 1KP does not offer non-repudiation
for messages sent by buyers and merchants. This means
that disputes about the authenticity of payment orders are
not unambiguously resolvable within the digital system.2

2KP demands that merchants, in addition to acquir-
ers, hold public key-pairs and public key certificates. The
protocol can thereby provide non-repudiation for messages
originated by merchants. Additionally, 2KP enables buy-
ers to verify that they are dealing with bona fide merchants
by checking their certificates, without any on-line contact
with a third party. As in 1KP, payment orders are au-
thenticated via the buyer’s credit card number and PIN,
encrypted before transmission.

3KP further assumes that buyers have their own public
key-pairs and public key certificates, thus achieving non-
repudiation for all messages of all parties involved. Pay-
ment orders are authenticated by the combination of credit
card number, optional PIN and a digital signature of the
buyer. This makes the forging of payment orders compu-
tationally infeasible. Additionally, 3KP enables merchants
to authenticate buyers on-line. This requires a full public
key infrastructure covering all parties involved.

The main reason for designing these three variants was
to enable gradual deployment: 1KP requires only a mini-
mal PKI and would have been suitable for immediate de-
ployment at the time it was proposed in early 1995. 2KP
requires a PKI covering all merchants, 3KP one covering
all merchants and all card holders. Looking back at what
actually transpired with the deployment of iKP and its de-
scendant, SET, there was actually no need for a 1KP-like
protocol.

All iKP protocols can be implemented in either software
or hardware. In fact, in 1KP and 2KP, the buyer does not
even need a personalized payment device: only credit card
data and PIN (if present) must be entered to complete a
payment. However, for the sake of increased security, it
is obviously desirable to use a tamper-resistant device to
protect the PIN and – in case of 3KP – the secret key of
the buyer.

We emphasize that the goal of iKP is to enable payments.
It is not concerned with any aspect of the determination
of the order; it assumes that the order, including price,
have already been decided on between buyer and merchant.
It does, however, provide secure and unambiguous linking
of order information with the payment to enable effective

1Strictly speaking, one cannot consider a number that is given to
any restaurant waiter or receptionist a valuable secret, in any sense.
But even if the buyer is not liable, knowing his or her credit card
number is sufficient to commit certain frauds, and thus overall system
security is improved if this number is protected. Moreover, collecting
credit card number over the Internet completely changes the scale of
the fraud problem; see, e.g., [1].

2From a legal point of view such ambiguities are not necessarily a
problem – provided there are fixed rules how to resolve them, and all
parties are aware of these rules. Some consequences of systems where
those rules were not appropriately designed are illustrated in [2].

dispute handling.
iKP protocols do not provide secrecy (encryption) of the

order information. Such protection is assumed to be pro-
vided by other mechanisms, e.g., SSL [3] or IPSec [4]. This
decoupling of order encryption from the electronic payment
protocol is an important design principle of iKP which sup-
ports compatibility with different underlying browsing and
privacy-protecting mechanisms. It also contributes to the
overall simplicity, modularity, and ease of analysis of the
protocols. An additional advantage is freeing iKP from US
export restrictions related to the use of bulk encryption.
Nonetheless, if desired, the iKP family (especially, 2KP
and 3KP) can be easily extended to generate shared keys
between buyer and merchant for protection of browsing and
order information.

The rest of this paper is organized as follows: Section II
provides a brief summary of the history of iKP and its rela-
tion to the current credit card payment standard, SET. The
different roles – buyer, merchant, acquirer – are introduced
in Section III, and their different security requirements are
analyzed in Section IV. The iKP family is described and
analyzed in Section V. Then, Section VI describes, in de-
tail, the iKP implementation architecture and reports on
the deployment. The paper concludes with the Appendix
A elaborating on the particular technique used for public
key encryption in iKP.

II. History and Related Work

iKP was developed in early 1995 by a group of re-
searchers at the IBM Research labs in Yorktown Heights
and Zürich. Right from the beginning the main goal was to
work towards an open industry standard. We distributed
the iKP protocols in the Internet Draft form, invited com-
ments from the scientific community, and presented our
design at the Internet Engineering Task Force meeting
in Summer of 1995. Subsequently iKP was incorporated
into the “Secure Electronic Payment Protocols (SEPP),”
a short-lived standardization effort by IBM, MasterCard,
Europay and Netscape. SEPP, in turn, was a key starting
point for “Secure Electronic Payments (SET),” the joint
VISA/MasterCard standard for credit card payments [5].
In fact, SET still retains many of the iKP-esque features.

Other important ancestors of SET are the “CyberCash
Credit Card Protocol” by CyberCash, and the “Secure
Transaction Technology (STT)” by Microsoft and VISA.
All these ancestors were proposed independently of each
other but use similar forms of cryptographic protocols.

From 1994 to 1996 an almost countless number of pay-
ment protocols for all kinds of payment models were pro-
posed (see [6] for a survey). One important difference be-
tween iKP and most of these proposals is that iKP was not
just a paper design: The “Zurich iKP Prototype (ZiP)” is
a fully operational prototype of 2KP and 3KP. Although it
did not become a commercial product, ZiP has been suc-
cessfully deployed in a number of business trials in Europe
and Japan since mid-1996. At the time of this writing,
a major Dutch payment provider (Interpay Nederland) is
still using ZiP in their I-Pay system, supporting 80 online
merchants and 17, 000 card holders.

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 3

Another important difference between iKP and other
credit card payment protocols is its simplicity, modular-
ity, and – to the extent the term can be used – elegance.
iKP was designed from a small, well-defined set of secu-
rity requirements (as seen in Section IV), which resulted
in a multi-party secure scheme where no party is forced to
trust other parties unnecessarily. We focused on the core
payment functionality and deliberately omitted all non-
payment functionality that could be easily added on top
of iKP, such as secrecy of order information or fair de-
livery of goods. Finally we designed iKP as a family of
protocols, thus anticipating gradual deployment.

Today only two approaches for secure credit card pay-
ments over the Internet are practically relevant: SET and
encryption of credit card data via SSL [3] or its eventual
successor TLS [7]

SET and its ancestor iKP, especially 3KP, are very sim-
ilar. The main difference is in their overall functionality
and complexity: iKP was designed as a lightweight proto-
col that provides the core payment functionality only, and
is therefore relatively simple to understand and to analyze.
SET was designed to support all options that exist in to-
day’s credit card operation and is therefore semantically
much richer than iKP, but also much more difficult to an-
alyze, implement and deploy.

SSL is the de facto standard for secure (i.e., encrypted
and integrity-protected) client-server communication on
the web; it is integrated in virtually all web browsers
and servers. SSL uses public-key cryptography, like SET
and iKP, but typically only servers (i.e., merchants) have
public-key certificates while clients (i.e., buyers) are anony-
mous. Encrypting credit card data with SSL is certainly
better than sending them in the clear, but the gain in pay-
ment security is very limited:

For the acquirer the use of SSL is completely transpar-
ent – no messages are signed – and thus the merchant
does not gain any security.

SSL does not hide credit card numbers or any other
information from the merchant. Thus, it cannot be
used for PIN-based authorization.

Unlike SET or ZiP, SSL does not mandate any specific
public-key infrastructure. Thus, there is no guarantee
that a buyer can verify the merchant’s public-key cer-
tificate, and even if the certificate can be verified the
semantics of such a certificate is not clear. In SET, a
special purpose public-key infrastructure can be man-
aged by the credit card organizations.

In SSL, merchants and acquirers need additional mech-
anisms (beyond SSL) to transmit credit card and au-
thorization information. iKP and SET, in contrast,
provide a complete, self-contained solution.

Most types of payment systems, not just credit and debit
cards, exist in the digital world. Typically each model re-
quires its own type of protocols, i.e., one cannot expect that
iKP can be applied to payment models that are very dif-
ferent to the credit card model. We refer to [6] for a survey
of other account-based payment models and protocols.

-

6

?

�

Payment System Provider

Clearing

Payment

Acquirer

SellerBuyer

Issuer

Fig. 1

Generic model of a payment system

III. iKP Payment Model

Parties. All iKP protocols are based on the existing
credit-card payment system. The parties in the payment
system are shown in Figure 1.

The iKP protocols deal with the payment transaction
only (i.e., the solid lines in Figure 1), and therefore involve
only three parties, called B – Buyer, S – Seller, and A –
Acquirer (gateway). Recall that A is not the acquirer in
the financial sense, but a gateway to the existing credit
card clearing/authorization network. In other words, the
function of A is to serve as a front-end to the current in-
frastructure that remains unchanged.

The payment system is operated by a payment system
provider who maintains a fixed business relationship with
a number of banks. Banks act as credit card (account)
issuers to buyers, and/or as acquirers of payment records
from merchants (sellers). Each issuer has a Bank Identi-
fication Number (BIN) assigned when an issuer signs up
with a payment system provider. A BIN is embossed on
each credit card included as part of the credit card number.
BIN also identifies the payment system provider.

We assume that each buyer receives its credit card from
an issuer, and is somehow assigned (or selects) an optional
PIN as is common in current credit card systems. In 1KP
and 2KP, payments are authenticated only by means of the
credit card number and the optional PIN (both suitably
encrypted), while, in 3KP, a digital signature is used, in
addition to the above.

It is also assumed (as is natural in the context of elec-
tronic payments) that the buyer is using a computer to
execute the payment protocol. Since this computer must
receive the buyer’s PIN and/or secret signature key, it must
be a trustworthy device. We caution that even a buyer-
owned computer is vulnerable: it may be used by several
people and may contain a Trojan horse or a virus that
could steal PINs and secret keys. The best payment device

4 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

would be a secure isolated and strictly-personal device, e.g.,
a tamper-resistant smartcard, connected to the computer
used for shopping via a buyer-owned smartcard reader with
its own keyboard and display. (This is often referred to as
an electronic wallet.) Technically, 1KP and 2KP can be
used with any kind of payment device, while for 3KP the
buyers need secure personal devices to store their secret
signature keys and certificates.

A seller signs up with the payment system provider and
with a specific bank, called an acquirer, to accept deposits.
Like a buyer, a seller needs a secure device that stores the
seller’s secret keys and performs the payment protocol.

Clearing between acquirers and issuers is done using the
existing financial networks.

Public Keys and Certification. Since all iKP proto-
cols are based on public key cryptography, a mechanism
is needed to authenticate these public keys. We assume a
certification authority, CA, which has a secret key, SKCA.
Its public counterpart, PKCA, is held by all other parties.
CA will certify a public key of party X by signing the pair
(X, PKX) consisting of the identity of X and X ’s public
key. (The signature is computed under SKCA.) Note that
PKCA must be conveyed in an authenticated manner to
every party. This is typically done out-of-band, via any of
a number of well-known mechanisms.

For simplicity’s sake, it is assumed in the rest of the pa-
per that there is a single certification authority. However,
it is easy to extend the protocols to support multiple CAs
such that the payment system provider at the top-level CA
issues certificates to its constituent issuers and acquirers,
while these, in turn, issue certificates to their buyers and
sellers. The implementation architecture described in Sec-
tion VI-G supports this model.

In all iKP protocols, each acquirer A has a secret key,
SKA, which enables signing and decryption. Its public
counterpart, PKA, which enables signature verification and
encryption is held by each accredited seller together with
its corresponding CA’s certificate. certificate.3 As in cur-
rent operation, acquirers receive the buyer’s credit card
numbers and PINs, and are trusted to keep these values
confidential.

Each seller in 2KP/3KP and each buyer in 3KP, has
a secret/public key-pair. The public keys are included in
certificates issued by the CA. The certificates also identify
the type of each party (i.e., seller buyer, acquirer.)

Adversaries and Threats. We consider three different
adversaries:

Eavesdropper: listens to messages and tries to learn
secrets (e.g., credit card numbers, PIN’s)
Active attacker: introduces forged messages in an
attempt to cause the system to misbehave (e.g., to
send him goods instead of to the buyer)

3 The above is somewhat oversimplified since, in practice, an ac-
quirer needs two public key-pairs: one for signatures and the other
for encryption. (It is well-known that using the same key-pair for
both purposes is not a good idea.) However, for conciseness’ sake,
this distinction is not reflected in the protocol description below.

Insider: either a legitimate party or one who learns
that party’s secrets. (One example is a dishonest seller
who tries to get paid without buyer’s authorization.)

Before delving into security requirements in Section IV,
we briefly discuss common threats and attacks.

The Internet is a decentralized, heterogeneous network,
without single ownership of the network resources and func-
tions. In particular, one cannot exclude the possibility
that messages between the legitimate parties would pass
through a maliciously controlled computer. Furthermore,
the routing mechanisms in the Internet are not designed
to protect against malicious attacks. Therefore, it is folly
to assume either confidentiality or authentication for mes-
sages sent over the Internet, unless proper cryptographic
mechanisms are employed. To summarize, it is easy to steal
information off the Internet. Therefore, at least credit card
numbers and PINs must not be sent in the clear.

In addition, one must be concerned about the trustwor-
thiness of the sellers providing Internet service. The kind
of business that is expected in the Internet includes the so-
called cottage industry – small sellers. It is very easy for an
adversary to set up a shop and put up a fake electronic store
front in order to get buyers’ credit card numbers (e.g., [1]).
This implies that the credit card number should travel from
buyer to acquirer without being revealed to the seller (who
needs only the BIN which can be provided separately.)

Obviously, a good deal of care must be taken to protect
the keys of acquirers. One of the biggest concerns is that of
an adversary breaking into an acquirer computer through
the Internet connection. Therefore, the acquirer’s com-
puter must be protected with the utmost care; including
a very limited Internet connection using advanced firewall
technology (e.g., [8], [9].)

Furthermore, the trust in the acquirer’s computer must
be limited, so that a break-in would have a limited effect
only.

IV. Security Requirements

In this section we consider a range of security require-
ments for each party involved in the payment process: is-
suer/acquirer, seller and buyer. They range from manda-
tory security requirements to optional features.

Issuer/Acquirer Requirements. The issuer and the
acquirer are assumed to enjoy some degree of mutual trust.
Moreover, an infrastructure enabling secure communica-
tion between these parties is already in place. Therefore,
we unify their respective requirements.

A1– Proof of Transaction Authorization by Buyer.
When the acquirer debits a certain credit card ac-
count by a certain amount, the acquirer must be in
possession of an unforgeable proof that the owner of
the credit card has authorized this payment. This
proof must not be “replayable,” or usable as proof
for some other transaction. This means it must cer-
tify at least the amount, currency, goods descrip-
tion, seller identification, and delivery address, and

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 5

be obtained in such a way that replay is not pos-
sible. (We use a combination of time stamps and
nonces for this purpose). Note also that in this con-
text the seller may be an adversary, and even such
a seller must not be able to generate a fake debit.
We distinguish between:

(a) Weak Proof, which authenticates the buyer to
the acquirer but does not serve as a proof for
third parties, and

(b) Undeniable Proof, which provides full non-
repudiation, i.e., can be used to resolve dis-
putes between the buyer and the payment sys-
tem provider.

The same distinction will be made for all subse-
quently required proofs of transaction.

A2– Proof of Transaction Authorization by Seller.
When the acquirer authorizes a payment to a cer-
tain seller, the acquirer must be in possession of
an unforgeable proof that this seller has asked that
this payment be made to him.

Seller Requirements.

S1– Proof of Transaction Authorization by Acquirer.
The seller needs an unforgeable proof that the ac-
quirer has authorized the payment. This includes
certification and authentication of the acquirer, so
that the seller knows he is dealing with the real
acquirer, and certification of the actual authoriza-
tion information. Note that, again, the amount and
currency, the time and date, and information to
identify the transaction must be certified. We also
distinguish between (a) Weak proof and (b) un-
deniable proof, with the latter providing full non-
repudiation.

S2– Proof of Transaction Authorization by Buyer. Even
before the seller receives the transaction authoriza-
tion from the acquirer, the seller might need an
unforgeable proof that the buyer has authenticated
it. Again we distinguish between (a) Weak Proof
and (b) Undeniable Proof. This requirement is nec-
essary to provide for off-line authorization.

Buyer Requirements.

B1– Impossibility of Unauthorized Payment. It must be
impossible to charge a buyer’s credit card without
possession of the credit card number, PIN and, in
case of 3KP, the buyer’s secret signature key. Thus,
neither Internet rogues nor malicious sellers must
be able to generate spurious transactions which end
up approved by the acquirer. This must remain the
case even if the buyer has engaged in many prior
legitimate transactions. In other words, informa-
tion sent in one (legitimate) transaction must not
enable a later spurious transaction. So in particu-
lar the PIN must not be sent in the clear, and not

even be subject to guessing attacks! Similar to the
two type of proofs of transactions, we distinguish
between:

(a) Impossibility: unauthorized payments are im-
possible provided the acquirer is honest and its
secret key is not available to the adversary, and

(b) Disputability: buyer can prove not having au-
thorized a payment even if the acquirer’s secret
key is available to the adversary (e.g., because
the adversary colludes with an insider).

We can observe that, in fact, these two require-
ments are typically met by satisfying the corre-
sponding acquirer requirements A1.a and A1.b, re-
spectively.

B2– Proof of Transaction Authorization by Acquirer.
Buyer might need to have proof that the acquirer
authorized the transaction. This “receipt” from
the acquirer is not of paramount importance, but
is convenient to have. Again, we distinguish be-
tween (a) Weak Proof and (b) Undeniable Proof
(full non-repudiation).

B3– Certification and Authentication of Seller. Buyer
needs proof that the seller is accredited at some
known acquirer (which could be considered as some
guarantee for the trustworthiness of the seller).

B4– Receipt from Seller. Buyer might need proof that
the seller who has previously made the offer has re-
ceived payment and promised to deliver the goods.
This takes the form of undeniable receipt. 2KP and
3KP satisfy this requirement, but will not ensure
fairness [10], [11]: since the seller can always refuse
sending this receipt while already having received
the authorization from the acquirer. In this case,
the buyer must take the next statement of account
as replacement for this receipt.

Additional possible buyer requirements. The fol-
lowing requirements (B5 – B6) may also be desirable. Here
we shortly discuss their relation to iKP; however, they are
not explicitly addressed by the iKP protocols.

B5– Privacy. Buyers might require privacy of order
and payment information. For example an investor
purchasing information on certain stocks may not
want competitors to know which stocks he is inter-
ested in. The privacy of order information and the
amount of payment should be implemented inde-
pendently of the payment protocol, e.g., based on
SSL [3].

B6– Anonymity. Buyers may also want anonymity from
eavesdroppers and (optionally) from sellers. Fur-
thermore, buyers may even want anonymity with
respect to the payment system provider. iKP does
not focus on anonymity and, in particular, offers no
anonymity from the payment system provider. This
might be desirable for systems that aim to imitate

6 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

cash, but is not essential for protocols, like iKP,
that follow the credit card-based payment model.
However, iKP does try to minimize exposure of
buyers identities with respect to sellers and out-
siders.

V. The iKP Protocol Family

In this section we present the three iKP protocols, i ∈
{1, 2, 3}. We first describe the cryptographic primitives
as well as the general protocol structure. The subsequent
subsections describe the actual protocols and discuss them
with respect to the security requirements outlined above.

Primitives and keys. Figure 2 summarizes the notation
for the cryptographic keys held by the various parties, and
the cryptographic primitives we will be using. While A’s
key-pair must enable signature and encryption, all other
key-pairs need to enable signatures only. (For simplicity’s
sake, it is assumed that each party has only one key-pair; in
Section VI specialized key-pairs for encryption and signa-
tures will be used). Note that signing and encryption (even
when performed with the same key-pair) are independent
operations; in particular: EX(SX(α)) 6= α.

As reflected in table 2 the encryption function EX must
provide some form of “message integrity.” Thus, a de-
cryption operation results in either a plaintext message
or in a flag indicating failure (invalid ciphertext). For-
mally, the primitive we need is an encryption function se-
cure against adaptive choosen ciphertext attacks. The im-
plication is that correct decryption convinces the decryptor
that the transmitter “knew” the plaintext that was orig-
inally encrypted. In other words, ciphertext tampering
is detectable. Two practical and provably secure schemes
achieving this property are: Optimal Asymmetric Encryp-
tion Padding (OAEP) [16] (which provides for “plaintext
awareness”) and Cramer-Shoup [17]. We use the former
scheme which we describe in Appendix A.

We stress that plaintext-aware encryption does not pro-
vide authentication in the manner of a signature (i.e., no
non-repudiation). Nonetheless, it can be made to provide
an authentication-like capability between parties sharing a
key (such as the BAN or PIN). We also note that the en-
cryption function must be randomized: EX over message
m mixes in a strong randomizing value (a nonce or con-
founder) such that muliple encryptions of the same plain-
text are different and unlinkable.

The iKP prototype implementation described in Sec-
tion VI uses RSA with 1024-bit key length for signatures
and for RSA-based plaintext-aware encryption. MD5 is
used as both a hash function H(·) and a primitive in the
keyed hash function Hk(K, ·). (The actual keyed hash con-
struct is based on HMAC [14]).

Figure 3 is a list of quantities that will occur in the pro-
tocols. Their meaning and usage will be further explained
as we go along.

Framework of iKP protocols. The protocols have
a common framework. Figure 4 illustrates the flows at a
very high level. Before the protocol begins, each party

Keys:

PKX , SKX Public and secret key of Party X (X =
Certification Authority CA, Buyer B,
Seller S, Acquirer A).

CERTX Public key certificate of Party X , issued
by CA. We assume it includes X, PKX

and CA’s signature on X, PKX .

All protocols assume A has a public key, and any party
needing it has PKCA. 1KP assumes no other keys;
2KP additionally assumes S has a public key; 3KP
further assumes B also has a public key.

Cryptographic primitives:

H(·) A strong collision-resistant one-way
hash function which returns strong
pseudo-random values. (Examples:
MD5 [12], SHA-1 [13])

Hk(K, ·) A one-way hash function requiring, in
addition to collision-resistance, no in-
formation leakage with respect to its
other arguments, if the first argu-
ment K is chosen at random. I.e.,
Hk(K, ·) should behave like a family
of pseudo-random functions. (Example:
HMAC [14], [15].)

EX(·) Public-key encryption with PKX , per-
formed in a way to provide both con-
fidentiality and some kind of computa-
tional “message integrity.” (Example:
OAEP [16].)

SX(·) Signature computed with SKX . Note
that the signature does NOT include
the actual message M , i.e., the signa-
ture function hashes the message before
signing.

Fig. 2

Keys and cryptograhic primitives used in iKP protocols

X ∈ {A, B, S} has some starting information represented
by ST-INFX . The buyer starts with the public key PKCA
of the certification authority. The seller has the certifi-
cate CERTA of the acquirer, and the acquirer has his own
certificate CERTA plus the corresponding secret key SKA.
Each party might also have other information, which differs
depending on the specific protocol.

It is assumed that before the protocol starts, the buyer
and the seller have agreed on the description and price of
the items to buy. The functionality required to shop and
agree on the item and price are provided by other means

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 7

Quantities occuring in all three protocols:

SALTB Random number generated by B. Used to salt DESC and thus ensure privacy of order information
(DESC) on the S to A link; also used to provide freshness of signatures (SigS and SigA).

AUTHPRICE Amount and currency.

DATE Seller’s date/time stamp, used for “coarse-grained” payment replay protection

NONCES Seller’s nonce (random number) used for more “fine-grained” payment replay protection

IDS Seller id. This identifies seller to acquirer.

TIDS Transaction ID. This is an identifier chosen by the seller which uniquely identifies the context.

DESC Description of purchase/goods, and delivery address. Includes payment information such as
credit card name, bank identification number, and currency. Defines agreement between buyer
and seller as to what is being paid for in this payment transaction.

BAN Buyer’s Account Number (e.g., credit card no.).

EXPIRATION Expiration date associated with Buyer’s Account Number.

RB Random number chosen by buyer to form IDB. It must be random (not just unique) in order to
serve as proof to the buyer that the seller agreed to the payment.

IDB A buyer pseudo-ID which computed as IDB = Hk(RB , BAN).

RESPCODE Response from the clearing network: YES/NO or authorization code.

Quantities occuring in some of the protocols:

PIN Buyer PIN which, if present, can optionally be used in 1KP and 2KP to enhance the security.

SALTC Random number used to salt the account number in the buyer’s certificate.

V Random number generated by seller in 2KP and 3KP for use as a proof that seller has accepted
payment (i.e., to bind Confirm and Invoice messages).

VC Random number generated by seller in 2KP and 3KP for use as proof that seller has not accepted
payment i.e., to bind negative Confirm/Cancel and Invoice messages.

Fig. 3

Definitions of atomic fields used in iKP protocols

Buyer
(ST-INFB)

Seller
(ST-INFS)

Acquirer
(ST-INFA)

−−− Initiate−−−−−−−−−−−−→
←−−− Invoice−−−−−−−−−−−−
−−−

Payment
−−−−−−−−−−−−→

−
Auth-Request
−−−−−−−−−−−→
←−
Auth-Response
−−−−−−−−−−−−

←−−− Confirm−−−−−−−−−−−−
←−Goods and Services−−−−−−−−−−

Fig. 4

Framework of iKP protocols

8 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

(e.g., the web browser).4 Thus, DESC and AUTHPRICE
are part of the starting information of seller and buyer. The
basic protocol consists of five flows. (Section VI describes
auxiliary flows that provide transaction cancellation, pay-
ment clearance, and payment status inquiry.)

The exact content of the flows depends on the actual
protocol. At a high level, however, there is a common
structure. The buyer starts with the Initiate flow. The
seller responds by sending back the Invoice. The buyer then
forwards the Payment flow which the seller uses to send an
authorization request Auth-Request flow to the acquirer.
The acquirer goes through the financial network to obtain
authorization and returns the authorization response flow
Auth-Response to the seller. Finally, the seller processes
this flow and produces a confirmation flow Confirm for the
buyer.

The main difference between 1,2 and 3KP is the increas-
ing use of digital signatures as more of the parties involved
possess a public/secret key-pair.

A. 1KP

Figure 5 shows the three iKP protocols. For the discus-
sion of 1KP, the additional variables and messages added
for the 2KP and 3KP protocols ([2,3 . . .] and [3 . . .]) are ig-
nored. 1KP represents the initial step in the gradual intro-
duction of a public-key infrastructure. Although it requires
the use of public-key encryption by all parties, only the ac-
quirer, A, needs to possess and distribute its own public
key certificate, CERTA. In particular, the total number
of certificates is small since it is determined only by the
number of acquirers.

Like all members of the iKP Family, 1KP requires all
buyers and sellers to have an authentic copy of PKCA, the
public key of the certification authority. Each buyer B has
an account number BAN (e.g., a credit card number) and
associated EXPIRATION, both known to the payment sys-
tem. B may also have a secret PIN which is also known
(possibly under a one-way function image) to the payment
system (but not to sellers). Every seller knows the certifi-
cate of its acquirer, CERTA and, if needed, can send it to
the buyer during the course of the protocol. The transport
of certificates is not made explicit in our description of iKP;
where necessary they are assumed to be piggybacked onto
iKP messages.

1KP does not require A to keep state on a per buyer ba-
sis. Buyer’s information is verified through the existing
authorization infrastructure which uses tamper-resistant
technology for processing and verification of PIN’s.

All parties in 1KP must perform certain public key com-
putations. Encryption is only performed once and only by
B, for sending account data (and optional PIN) as part of
SLIP. Conversely, decryption is only performed by A (this
is also the case for 2KP and 3KP). In 1KP, only A signs
data, which is then verified by both B and S. We now turn
to the flow-by-flow actions of the parties.

4Indeed, the current consensus is that functions that are beyond
payment, such as price negotiation, should be separated, and stan-
dardized; e.g., JEPI [18], SEMPER [19], [20].

Initiate: Buyer forms IDB by generating a random number
RB and computing IDB = Hk(RB, BAN). Buyer generates
another random number SALTB to be used for “salting”
the hash of merchandise description (DESC) in subsequent
flows. Buyer sends Initiate flow.

Invoice: Seller retrieves SALTB and IDB from Initiate,
obtains DATE. Generates random quantity (nonce)
NONCES . The combination of DATE and NONCES

is used later by A to uniquely identify this pay-
ment: the nonce disambiguates payments with common
DATE. Seller then chooses transaction id TIDS which
identifies the context and computes Hk(SALTB, DESC).
Seller forms Common as defined above and computes
H(Common). (Note: seller does not need to additionally
“salt” H(Common) because it contains the already-salted
Hk(SALTB, DESC).) Finally seller sends Invoice. CERTA

can be tagged onto this message or sent to B at a later
time, e.g., together with the Confirm message.

Payment: Buyer retrieves Clear from Invoice and vali-
dates DATE within a pre-defined time skew. B com-
putes Hk(SALTB, DESC). (Note that B already has
AUTHPRICE and IDB and can thus form Common.) He
then computesH(Common) and checks that it matches the
value in Clear. Next, B forms SLIP as defined in Figure 5
with PIN being optional. Finally, the slip is encrypted un-
der the acquirer’s public key (EncSlip = EA(SLIP)) and
sent to the seller in the Payment flow.

Auth-Request: The seller now requests the acquirer to au-
thorize the payment. He forwards EncSlip along with Clear
and Hk(SALTB, DESC).

Auth-Response: The acquirer extracts Clear, EncSlip and
Hk(SALTB, DESC) from Auth-Request. A then does the
following:
(1) Extracts from Clear: IDS , TIDS , DATE, NONCES

and the value h1 which presumably corresponds to
H(Common). A now checks for replays, i.e., makes
sure that there is no previously processed request
with the same quadruple: IDS , TIDS , DATE and
NONCES .

(2) Decrypts EncSlip. If decryption fails, A assumes that
EncSlip has been altered (by an adversary or by S)
and the transaction is therefore invalid. Otherwise,
A obtains SLIP and, from it, extracts AUTHPRICE,
h2 (corresponding to H(Common)), BAN, EXPIRA-
TION, RB , and, optionally, PIN.

(3) It checks that h1 and h2 match; this ensures that
buyer and seller agree on the order information (price,
identity of seller, etc).

(4) A then re-constructs Common. (It has AUTHPRICE
from SLIP. It has IDS , TIDS , DATE, and NONCES

from Clear. It can compute IDB = Hk(RB, BAN)
because it has RB and BAN from SLIP. Finally it has
Hk(SALTB, DESC) from Auth-Request. Put together,
these yield Common.) A then computes H(Common)
and checks that it matches h1 above.

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 9

Composite Fields:

Common AUTHPRICE, IDS , TIDS , DATE, NONCES , IDB, Hk(SALTB , DESC), [2,3H(V), H(V C)]

Clear IDS , TIDS , DATE, NONCES , H(Common), [2,3H(V), H(V C)]

SLIP AUTHPRICE, H(Common), BAN, RB, [PIN[3 |SALTC]], EXPIRATION

EncSlip EA(SLIP)

SigA SA(RESPCODE,H(Common))

[2,3 SigS] SS(H(Common))

[3 SigB] SB(EncSlip,H(Common))

Starting information of parties:

ST-INFB DESC, AUTHPRICE, BAN, EXPIRATION, PKCA, [PIN], [3 SKB, CERTB, [SALTC]]

ST-INFS DESC, AUTHPRICE, PKCA, CERTA, [2,3 SKS , CERTS]

ST-INFA PKCA, SKA, CERTA

Protocol Flows:

Initiate: B −−−−−−−−−−−−−−−
SALTB, IDB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Invoice: B ←−−−−−−−−−−−−−−−
Clear, [2,3 SigS]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Payment: B −−−−−−−−−−−−−−−
EncSlip, [3 SigB]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Auth-Request: S −
Clear, Hk(SALTB, DESC), EncSlip, [2,3 SigS , [3 SigB]]
−−→ A

Auth-Response: S ←−−−−−−−−−−−−−−−
RESPCODE, SigA−−−−−−−−−−−−−−−−−−−−−−−−−−−−− A

Confirm: B ←−−−−−−−−−−
RESPCODE, SigA, [2,3 V |V C]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Fig. 5

iKP Protocols

(5) Next, the acquirer uses the credit card organization’s
existing clearing and authorization system to obtain
on-line authorization of this payment. This entails
forwarding: BAN, EXPIRATION, PIN (if present),
price, etc., as dictated by the authorization system.
Upon receipt of a response RESPCODE from the au-
thorization system, A computes a signature, using the
function SA, on RESPCODE and H(Common).

Finally A sends Auth-Response to S. TIDS can be tagged
onto the message enabling the seller to easily recover the
transaction context.

Confirm: The seller extracts RESPCODE and the ac-
quirer’s signature from Auth-Response. He then verifies
the acquirer’s signature and forwards both RESPCODE
and SigA to the buyer.

1KP satisfies the following requirements:

A1(a) Proof of Transaction Authorization by Buyer. SLIP
includes the BAN, EXPIRATION and the PIN. (The last
one, if present, is known only to the buyer and payment
system and is the basis of the buyer’s security. If PIN is
not present, one must assume the BAN and EXPIRATION
are not known to the adversary.) Since B knows PKCA

and verifies CERTA, it is ensured that B does not unwit-
tingly send the BAN, EXPIRATION and PIN to a non-
authorized party. A decrypts and checks that the BAN,
EXPIRATION and PIN are correct. The chosen-ciphertext
security (or plaintext-awareness) of the encryption (see be-
ginning of Section V) implies that SLIP originated with
the BAN and PIN holder. An adversary not knowing the
BAN or PIN can neither create a fake SLIP nor modify the
encryption of a legitimate one to its advantage.

Note that PIN-based authentication provides only a weak
proof whereas signature-based authentication (as used in

10 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

3KP) provides undeniable proof. Moreover, the probabil-
ity of guessing the correct PIN is much higher than the
probability of guessing a valid signature.
However, the security of the encryption against chosen mes-
sage attacks (and in particular the fact that it is random-
ized) implies security against dictionary attacks. Note that
had EA(·) been a deterministic encryption function, an at-
tacker who knows all data fields within SLIP (except PIN)
could compute encryptions EA(SLIP) for all possible val-
ues of PIN and determine the correct PIN by comparing
all encryptions with the one produced by B. In [21] it is
formally proven that off-line dictionary attacks against the
PIN number are provably prevented if one uses an encryp-
tion function which is semantically secure against chosen
ciphertext attacks. (Interestingly, they show that semantic
security against plaintext-only attacks is not sufficient to
ensure such resistance to dictionary attacks.)
It is important to stress that the “transaction” for which
we need proof includes the item description, and in par-
ticular the delivery address. It should be impossible for
an adversary to divert a legitimate payment by changing
the delivery address. The value H(Common) is included in
A’s authorization in order to prevent such attacks. In par-
ticular, it prevents a special kind of person-in-the-middle
attack that we now describe.
An attacker who impersonates a seller can get the buyer
to agree to purchase something for a given amount. The
attacker then obtains from the buyer the encrypted slip
authorizing payment. The attacker now impersonates the
buyer to the seller, but this time the adversary buys for
the same amount a (possibly) different merchandise with
different delivery address and “pays” for it with the buyer’s
slip. Notice, however, that in this case there will be a
mismatch between the view of the “order” by the real buyer
and the seller, and, consequently, a mismatch in the value
of H(Common).
Finally, replay of SLIP by a dishonest seller is detected
by the combination of DATE and NONCES . There is an
“acceptable delay” period Tdelay. All SLIP-s are cached
for Tdelay time units past DATE. Different SLIP-s with
the same DATE are disambiguated by nonces.

S1(b): Proof of Transaction Authorization by Acquirer.
The unforgeable, undeniable non-repudiable proof is the
digitally-signed message sent by A. The inclusion of
H(Common) prevents replay of authorization messages
which would otherwise result in fake authorization of
buyer’s payments.
Since the seller knows Common in advance, the signature
would accurately reflect any tampering in the information
sent from seller to acquirer and any disagreement between
buyer and seller as far as payment data.
The inclusion of H(Common) in both the buyer-generated
SLIP and (explicitly) in Auth-Request enables A to detect
any conflicts between the seller’s and buyer’s views of the
order contents (prior to submitting the transaction to the
clearing network).

B1(a): Unauthorized Payment is Impossible. This is a

direct consequence of satisfying A1(a).

B2(b): Proof of Transaction Authorization by Acquirer.
This is a direct consequence of satisfying S1(b).

B5: Privacy. 1KP provides partial privacy. Specifically,
acquirer is not given DESC, but only Hk(SALTB, DESC).
Furthermore, acquirer (or an eavesdropper on the acquirer-
to-seller link) cannot obtain DESC via dictionary attack,
for the following reason.
In a dictionary attack, the attacker who has a set of pos-
sible values of DESC wants to determine whether one
of them corresponds to what the buyer is ordering. If
“salt” was not used, the attacker could easily make the
check by evaluating H on collected values and seeing
whether one of the results matchesH(DESC) in the subject
flow. However, without the knowledge of SALTB used in
Hk(SALTB, DESC) all possible description guesses DESC′

will have the same likelihood due to the pseudo-random
nature of Hk().
Of course, an attacker who eavesdrops on both buyer-seller
and seller-acquirer links can record SALTB (transmitted
in the clear on the former) and mount a dictionary at-
tack. However, recall that order privacy is not one of our
central goals and, if deemed to be a strong concern, buyer-
seller communication may be protected by complementary
means, such as SSL [3].
1KP also hides buyer’s identification information by only
disclosing the one-time randomized pseudo-identity IDB.
This quantity is sufficient for the acquirer to bind the trans-
actions to the actual buyer but it does not allow for disclos-
ing of actual ID information (such as the BAN) in public
(including to sellers) or to allow an attacker to link different
purchases by the same buyer.

The last protocol flow carrying signed authorization by
the acquirer is optional. Its only purpose is to provide a
transaction receipt for the buyer but is has no impact on
the security of the protocol.

To summarize, 1KP is a simple and fairly efficient pro-
tocol. Its main achievement was (at the time of its design,
circa 1995) to get a secure electronic payment system with
as little modification as possible to the existing infrastruc-
ture. Its main weaknesses are: 1) the buyer authenticates
itself via the acquirer by means of only account number
and optional PIN (as opposed to strong authentication via
digital signatures); 2) the seller does not directly authenti-
cate itself to the buyer or acquirer (there is however some
level of indirect authentication via the buyer’s SLIP and
the authorization by the acquirer); and 3) neither seller
nor buyer provide undeniable receipts for the transaction.
Enhancing 1KP to provide these missing features results in
the protocols described in the next two subsections, 2KP
and 3KP.

B. 2KP

The second protocol, 2KP, is obtained by including also
the values and fields specific to 2KP ([2,3 . . .]) to the pro-
tocol in Figure 5. The basic difference with respect to 1KP
is that, in addition to A, each seller S needs to possess a

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 11

public key with a matching secret key, and distribute its
own public key, with its certificate, CERTS .

We now describe the additions to the flows and actions.
There are two new elements in Invoice. The first is that the
seller chooses random values V and V C and puts H(V) and
H(V C) in Clear. (The inclusion of V or V C in Confirm will
later serve as a (one-time) “signature,” thereby saving the
seller one signature computation. See below.) These values
will be added to Common for what follows. Second, the
seller signsH(Common) and includes this signature SigS in
Invoice. Upon receipt of Invoice the buyer checks the seller’s
signature, and then proceeds as before to generate Payment.
Auth-Request is augmented by the seller to include the same
signature SigS he sent to the buyer earlier. The acquirer
checks this signature before authorizing payment. Finally,
the value V (success) or V C (failure) is included by the
seller in Confirm. The buyer computes H(V) (or H(V C))
and checks that it matches the value sent earlier in Invoice.

2KP satisfies all the requirements addressed by 1KP, as
well as:

A2: Proof of Transaction Authorization by Seller. This is
achieved by the inclusion of the seller’s signature SigS and
the acquirer’s verification of it.

B3: Certification and Authentication of Seller. Similarly
achieved by inclusion of signature of seller and its check by
buyer.

B4: Receipt from Seller. This is achieved by the combi-
nation of S’s signed message sent to A, and the value V
(V C) sent in Confirm. V (V C) assures the buyer (and any
third party) that the seller has accepted (rejected) the pay-
ment. This is because no other party is capable of finding
V (V C). (It would require inverting the one-way function
H on the point H(V) or H(V C)). In this way the cost of
an extra digital signatures (such as RSA) is saved.
Obviously, S can refuse forwarding A’s authorization mes-
sage to the buyer and sending its last message. In this case,
B does not know whether the transaction was aborted or
finalized. This must be handled based on the next account
statement.

C. 3KP

The last protocol—3KP—is obtained by including in
Figure 5 the fields that are 2KP- and 3KP-specific ([2,3 . . .]
and [3 . . .], respectively.). As can be expected, in 3KP all
protocol participants, including buyers, possess a public
key with the associated secret key and certificate. All par-
ties are now able to provide non-repudiation.

CERTB, sent (out-of-band) to the seller in addition to
the iKP flows, may contain some additional data besides
the buyer’s public key and ID. These data are included in
the certificate in salted hashed form using Hk(). This al-
lows to open the information only on demand and prevents
the leaking of information to unauthorized users. For in-
stance, CERTB might include the hash of the buyer’s phys-
ical address, and whether ordered goods should be sent to
B’s home address, B can reveal “Buyer’s physical address”
and the corresponding salt to the seller who can verify it

based on CERTB. Similarly, CERTB can securely link the
BAN to the signing key. This allows the acquirer to ef-
ficiently verify that the payer has the necessary authority
over BAN contained in the SLIP (see [15]). 3KP certificates
as implemented in the ZiP prototype (Section VI) contain
a salted hash Hk(SALTC , BAN) of the BAN. Since SALTC

is included in EncSlip, the acquirer can do this check.
The buyer’s signature serves as undeniable proof of

transaction (A1.b), and enables disputability (B1.b). If the
3KP certificate contains no cleartext buyer identity (e.g.,
only the above hashed data or possibly a pseudonym), 3KP
does not provide the seller with more information about the
buyer than 1KP or 2KP. On the other hand, the sellers can
link all payments of the buyer with CERTB and B’s sig-
nature, i.e., the buyer loses some privacy when compared
to 1KP and 2KP. One way to avoid this is by encrypting
CERTB and the signature with A’s public key. In that
case, the seller of course cannot verify SigB but can still
rely on SigA for a guarantee of the transaction outcome.

Notice that in 3KP PIN numbers can still be used, but
only for compatibility with the existing infrastructure. Ex-
cept for that reason, PINs can be omitted since the level of
authentication provided by the buyer’s signature is signifi-
cantly superior to that provided by a PIN. (Note, however,
that the inclusion of a user-memorizable PIN can still pro-
vide some defense in the case that the buyer’s signature
key is stolen.)

3KP satisfies all the requirements addressed by 2KP, as
well as:

A1(b): Undeniable Proof of Transaction Authorization by
Buyer. The buyer signs the SLIP using a secret key SKB

known to B only.

S2(b): Proof of Transaction Authorization by Buyer.
Based on B’s signature, S can verify that SLIP was signed
by B. S cannot verify the correctness of the contents of
SLIP, especially not of the PIN.

B1(b): Unauthorized Payment is Impossible. Follows from
A1.b.

D. Comparison of the iKP protocols

The iKP protocols presented above vary in the degree of
both protection and complexity. They proceed in an in-
cremental path towards electronic payment with strong se-
curity features with respect to all parties involved. Prac-
tically speaking, it was envisaged at the time of the de-
sign that 1KP would represent a short-term, interim step
towards payment protocols with stronger security guaran-
tees. Thereafter, 2KP and 3KP could be gradually phased
in. Table V-D presents a comparison of the iKP protocols.

The iKP family can fulfill all stated requirements and,
in particular, provides non-repudiable receipts from the ac-
quirer to the seller/buyer, and from the seller to the buyer.
In case that the buyer also possesses a public key-pair
(3KP), buyer payment non-repudiation becomes possible.

Although anonymity is not the focus of iKP, both 1KP
and 2KP provide anonymity of the buyer to the seller, and
to the outside: the buyer uses a pseudo-identity IDB which

12 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

TABLE I

Comparison of the iKP payment protocols. A requirement marked by

√
is satisfied but not disputable (weak), while

√√

indicates that the requirement is satisfied based on undeniable proof (strong) providing non-repudiation and disputability.

REQUIREMENTS/PROTOCOLS 1KP 2KP 3KP
Issuer/Acquirer
A1. Proof of Transaction Authorization by Buyer

√ √ √√
A2. Proof of Transaction Authorization by Seller

√√ √√
Seller
S1. Proof of Transaction Authorization by Acquirer

√√ √√ √√
S2. Proof of Transaction Authorization by Buyer

√√
Buyer
B1. Unauthorized Payment is Impossible

√ √ √√
B2. Proof of Transaction Authorization by Acquirer

√√ √√ √√
B3. Certification and Authentication of Seller

√√ √√
B4. Receipt from Seller

√√ √√

is different in each transaction and unlinkable across trans-
actions. The buyer’s payment activity is thus unlinkable
and untraceable. 3KP clearly leaks identity information
through the use of buyer certificates. However, through
the use of pseudonyms, buyers can remain anonymous, if
not unlinkable.

Order privacy against eavesdroppers can be attained by
employing a secure communication protocol (e.g., [3], [4]).
Alternatively, the iKP protocols themselves could be ex-
tended to provide this type of protection. Since iKP aims
at credit card-like payments, no anonymity against the pay-
ment system is provided.

As shown in the next section, the iKP protocols can be
easily extended to support batch processing of payments
from the same buyer by the seller and/or to guarantee
(block) payment amounts as commonly done, for exam-
ple, in the case of hotel or car rentals payments. Another
avenue for extensions are micro-payments: the relatively
high cost of credit card transactions makes iKP unsuitable
for payments of very small amounts. However, Hauser et
al. [22] show how iKP can be extended to support micro-
payments efficiently without sacrificing strong multi-party
security.5

The iKP protocols were implemented at the IBM Zürich
Research Lab in early 1996. The implementation and de-
ployment of the resulting system, referred to as ZiP (Zürich
iKP Prototype), is described in the next section.

VI. ZiP: Implementation and Deployment

A. Protocol scenarios

The payment authorization core of the ZiP implementa-
tion is formed by the 2KP and 3KP protocols described in
the previous section. Additional functionality was added
during the implementation phase following the requests of
the target user community. The actual ZiP protocol suite
includes four protocol scenarios:

5Note that most other micro-payment protocols such as Milli-
cent [23] and NetBill [24] gain their efficiency through the use of
shared-key cryptosystems and therefore require complete trust in the
payment system provider.

1. Payment Authorization (2KP and 3KP augmented
with cancellation option)

2. Separate Payment Clearance (Capture)6

3. Refunds

4. Inquiry

B. Payment Authorization

ZiP payment authorization consists of the basic payment
scenario described in Section V and Figure 5. The ZiP
implementation (Figure 6) is augmented with an optional
Cancel flow (carrying the seller’s cancellation commitment
V C) which is used by the seller if he decides, for whatever
reason, not to go ahead with the authorization request.
RESPCODE, in this case, is set by the seller rather than
by the acquirer.

The ZiP protocols were also augmented with a number of
timestamps enabling efficient replay detection and transac-
tion lifetime management: the acquirer sets a timestamp
of authorization in AUTHTIME; and the seller specifies
an invoice expiration INVOICEEXP. In addition, ZiP al-
lows for optional data, OPTSIGZ , which is not carried in
iKP flows, to be included in the signatures (see also Sec-
tion VI-F).

The variable PFLAGS contains a number of protocol
flags set jointly by buyer and seller:
• PFLAGS:SIG B - Buyer’s signature SigB present in
Payment and Auth-Request.
This option is set by the buyer but must be fixed for a
given buyer-account combination. In other words, a buyer
who has the ability to generate signatures must always do
so. However, it is ultimately the acquirer’s responsibility
to make sure that a buyer with signature capability always
uses PFLAGS:SIG B.
A seller can refuse to issue an Invoice if it is the seller’s
policy to always require SigB and the buyer is not able to
provide it.

6The terms ”clearance” and ”capture” are used interchangeably
throughout this paper.

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 13

Composite Fields:

Common PFLAGS, AUTHPRICE, IDS , TIDS , DATE, INVOICEEXP, NONCES , IDB,
Hk(SALTB, DESC), H(V), H(V C)

Clear PFLAGS, IDS , TIDS , DATE, NONCES , H(Common), INVOICEEXP, H(V), H(V C)

SLIP AUTHPRICE, H(Common), BAN, RB , [PIN|SALTC], EXPIRATION

EncSlip EA(SLIP)

SigA SA(RESPCODE, AUTHTIME,H(Common), OPTSIGA)

SigS SS(H(Common), OPTSIGS)

SigB SB(EncSlip,H(Common), OPTSIGB)

Protocol Flows:

Initiate: B −−−−−−−−−−
PFLAGSa, SALTB, IDB−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Invoice: B ←−−−−−−−−−−−−−
Clear, [SigS]

−−−−−−−−−−−−−−−−−−−−−−−−−−− S

Payment: B −−−−−−−−−−−−−
EncSlip, [SigB]
−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S

Cancel: B ←−−−−−−−
RESPCODE, VC, [SigS]
−−−−−−−−−−−−−−−−−−− S

Auth-Request: S −
Clear, Hk(SALTB, DESC), EncSlip, SigS , [SigB]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ A

Auth-Response: S ←−−−−−−−
RESPCODE, AUTHTIME, SigA−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− A

Confirm: B ←−
RESPCODE, AUTHTIME, V|VC, [SigA], [SigS]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− S

aPFLAGS in Initiate contains all the options set by the buyer; seller may add PFLAGS:CLRN to the final PFLAGS sent in Clear.

Fig. 6

ZiP Payment Authorization

• PFLAGS:SIG S - Sellers’s signature SigS requested in
Invoice.
If SigS is not present in Invoice, it has to be present in
Confirm (or Cancel) and checked by the buyer at that time.
This option is set by the buyer. A buyer may, e.g., gather
SigS ’s from multiple sellers for the purpose of compara-
tive shopping, each time suspending the transaction after
having received the signed invoice. Such an abbreviated
protocol run can be resumed at a later time provided that
SigS is still timely/valid.
As before, a given seller can refuse to comply because, for
example, it is not interested in giving out signed “offers”
for buyers that aren’t ready to pay.
• PFLAGS:CONFIRM - Confirm is requested.
It is set by the buyer; it is envisaged that every seller should
support this option. If PFLAGS:CONFIRM is set but the
seller delays authorization or cannot reach the acquirer, the
seller can reply with a Status flow (see Section VI-E).
• PFLAGS:SIG A - SigA is requested in Confirm.
It is set by the buyer and can only be used in conjunction
with the PFLAGS:CONFIRM option.

• PFLAGS:CLRN - Authorization and clearance (capture)
are performed together.
This option is set by the seller. If set, the protocol
in Figure 6) suffices to complete payment. Otherwize,
the protocol only achieves payment authorization; the
seller must subsequently perform a seperate clearance func-
tion (Section VI-C) or take further processing of this
payment off-line. The response code from the acquirer
in Auth-Responseindicates whether authorization is given,
and, if clearance was requested, whether the payment was
cleared.
While a buyer may, in principle, refuse this option, this is
not likely.
• PFLAGS:noEnc - The buyer does NOT use encryption.
SLIP is sent in the clear and contains neither a PIN nor
SALTC . This flag is set by the buyer. Sellers have no
say over this option. The purpose is to avoid the expense
of encryption and to satisfy certain export regulations in
cases when BAN’s are not treated as secret or sensitive
information. Can only be used in conjunction with the
PFLAGS:SIG B option.

14 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

C. Separate Payment Clearance/Capture

The protocol shown in Figure 7 performs separate clear-
ance after a prior successful payment authorization with
PFLAGS:CLRN not set. This clearance must be performed
with the same acquirer that handled the previous autho-
rization.

Multiple clearance flows against the same payment au-
thorization are supported. Replay of clearance requests is
checked by the acquirer based on the CLRNSEQ counter.
CLRNPRICE represents the total amount cleared; if
CLRNPRICE is lower than in the previous Clrn-Request,
this is a request for refunds (Section VI-D). Including
the total cleared price (as opposed to incremental differ-
ences) makes the system more robust against inconsisten-
cies between seller and acquirer due to loss of messages;
also, it allows for more efficient state-keeping and proof-
collection (both seller and acquirer only have to store the
last Clrn-Request and/or Clrn-Response).

D. Refunds

Sellers may issue refunds for previously cleared pay-
ments. Although it is understood that refunds are typ-
ically triggered by consumers/buyers, the interaction be-
tween buyer and seller that leads to an eventual refund is
assumed to take place off-line (i.e., outside iKP/ZiP).

Within iKP/ZiP, a refund transaction – for all practi-
cal purposes – is equivalent to (and treated as) a clear-
ance/capture transaction. As explained above, a refund is,
essentially, a clearance with the lower amount. The differ-
ence between a refund and a clearance manifests itself only
within the domain of the financial clearing network.

E. Inquiry

The buyer can ask the seller about the status of a spe-
cific payment. The protocol is shown in Figure 8. The
buyer may transmit Inquiry at any time after submitting a
Payment flow. The seller must be able to respond for some
time after the payment transaction is completed; the exact
time period is the choice of the seller or may be specified
by the financial institutions. The response from the seller
is either Confirm (if the seller has received Auth-Response),
a Status message with his view on the current transaction
state (if he hasn’t received Auth-Response), or Cancel (if he
decided to cancel the payment and hasn’t previously sent
Auth-Request to the acquirer nor Confirm to the buyer).

F. Implementation rationales and explanations

This section explains some of the features of the ZiP
protocol design.

Opaque fields. Some protocol fields are treated opaquely
by ZiP. “Opaque” in this context means that these flows
are not carried within the protocol messages. At the same
time, these fields are authenticated and integrity-protected
by ZiP. Some of these fields may (and sometimes have to)
be tacked on by the higher-layer software. These fields are:

DESC. Purchase details (e.g., merchandise descrip-
tion) may have to be explicitly transmitted between

Protocol Flows:

Inquiry: B −−−−
H(Common)
−−−−−−−−−−−−−−→ S

Confirm: S ←−
(same as in Figure 6)
−−−−−−−−−−−−−−−−− S

—OR—

Cancel: S ←−
(same as in Figure 6)
−−−−−−−−−−−−−−−−− S

—OR—

Status: S ←−−−−−−STATE−−−−−−−−−−−− S

Fig. 8

ZiP: Inquiry protocol

buyers and sellers. However, it is not recommended
for transmission to the acquirer.

All fields of the form OPTSIGZ are (as the name sug-
gests) optional. They carry optional data and are in-
cluded in the respective SigZ signatures.

For example, they can be used to carry creden-
tials/certificates of various entities (hence their ab-
sence from the ZiP protocol flows), or other optional
data like periodic account statements or additional
information returned by the clearing network (such
as additional authorization codes needed for separate
clearing).

Replay Detection. Since both TIDS as well as buyer-
chosen random values serve as input to H(Common), as-
sociation management and replay detection by buyer and
seller Transaction Layers (see Section VI-G) is largely based
on H(Common). (An exception is Initiate: since this flow
doesn’t containH(Common), a buyer transaction identifier
TIDB is tagged onto Initiate by the Transaction Layeras the
replay detection key for this flow.)

Similarly, the Transaction Layer at the acquirer uses
H(Common) as a transaction identifier. Note that the ac-
quirer and/or financial network must perform replay de-
tection only if the seller requests payment capture process-
ing, to ensure that old Clrn-Request messages cannot be
used to change the captured amount. Replay detection for
authorization-only requests is a policy matter determined
by the individual payment system providers.

Typing of message fields. Every signature type gen-
erated in ZiP is assigned a unique signature identifier. Ev-
ery signature operation (generation/verification) automat-
ically includes a signature identifier for a specific signature
type. The same holds for all hash function computations.

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 15

Composite Fields:

SigClrnS SS(H(Common),CLRNPRICE, OPTSIGCLRNS , CLRNSEQ)

SigClrnA SA(RESPCODE, CLRNTIME, CLRNPRICE, CLRNSEQ, H(Common), OPTSIGCLRNA)

Protocol Flows:

Clrn-Request: S −
H(Common),CLRNPRICE, CLRNSEQ, SigClrnS−−→ A

Clrn-Response: S ←−
RESPCODE, CLRNTIME, CLRNSEQ, SigClrnA−− A

Fig. 7

ZiP: Clearance protocol

The following distinct signature types are identified:
SigB, SigS , SigA, SigClrnS , SigClrnA.7

The following hash function computations are uniquely
identified: H(Common), H(V), H(V C), Hk(RB , BAN)
and Hk(SALTB, DESC).

Performance. Cryptographic operations such as com-
putation/verification of public key signatures and en/de-
cryption are computationally expensive. iKP and ZiP are
designed to improve performance by minimizing the num-
ber of cryptographic operations.

Adherence to export regulations. The protocol is
designed to minimize the amount of data encrypted, in
order to satisfy the export control rules of the U.S. govern-
ment. As described in detail in A, only SLIP is encrypted,
and the data therein is limited to financial information.

G. Architecture

Figure 9 shows the architecture of ZiP. Buyer, Seller and
Acquirer applications, residing on different network nodes,
access the iKP functionality through the Transaction Layer
interface [25]. The Transaction Layer provides the payment
applications with a high-level (C++) interface using sim-
ple payment objects, such as a BuyerTransaction class with
methods Initiate(), Pay(), Inquiry(). The Transaction Layer
takes care of association management, audit and config-
uration. The assocation management finds transactions
matching incoming messages based on transaction ids (or
H(Common), as described in Section VI-F). It detects du-
plicate messages and unexpected messages, i.e., those not
corresponding to an outstanding or recorded transaction.
Unexpected requests are acknowledged with an error mes-
sage, unexpected replays are ignored.

The Transaction Layer realizes robustness of the ZiP pro-
tocols in the presence of failures. It keeps transaction state

7 Since multiple clearance transactions against the same pay-
ment authorization are allowed, the clearance signatures (SigClrnS ,
SigClrnA) are further distinguished by CLRNSEQ.

in persistant storage and recovers from system crashes. To
overcome unreliable communication, the Transaction Layer
tries retransmitting after appropriate timeouts. The re-
play detection in the Transaction Layer will catch this and
correspondingly resend the previous reply. (Note that the
messages are idempotent!)

The Comm module sends iKP messages between differ-
ent ZiP users. It supports several underlying transport
mechanisms such as HTTP, Internet e-mail, TCP/IP.

Glue is an optional part that glues the network-
independent buyer application to a user application such
as a WWW browser, a CD-ROM catalog, etc. (see [26])

Payment applications, Transaction Layer, Glue, Comm
and Safe Storage are all implemented in C++. The lower
layers, consisting of the iKP, certificate and crypto li-
braries, are written in C.

The iKP Library [27] provides the core functionality for
composing and verifying iKP protocol messages, using Cer-
tificate Library [28] for verifying certificates and Crypto [29]
for accessing cryptographic primitives. The iKP Library al-
lows Buyer, Seller and Acquirer applications to verify re-
ceived iKP messages against a context kept by the Trans-
action Layer, and to compose iKP messages to be sent. It
returns an updated state to the Transaction Layer after each
successful verification or composition.

Crypto separates the iKP protocol functionality from the
cryptographic functionality, and allows support for differ-
ent cryptographic toolkits. The Crypto API consists of
methods for signature generation and verification, encryp-
tion and decryption, hashing and key handling (genera-
tion, destruction). The ZiP Crypto module is based on the
RSA and MD5 functions of the RSA BSAFE 2.1 library.
It provides additional functionality such as the randomized
and plaintext-aware encryption (using OAEP) described in
Appendix A. It also provides an interface for seeding the
random number generator and implements seed collection
combining various sources of randomness such as network

16 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

Glue Buyer / Seller / Acquirer Application

Transaction Manager

Buyer Seller Acquirer

iKP Library

Crypto Library (BSAFE)
C

er
tif

ic
at

e
Li

br
ar

y

Crypto

Safe
Storage

Comm

Fig. 9

ZiP implementation architecture

traffic and inter-keystroke intervals of user-provided data.
ZiP also implements a dummy Crypto module which al-

lows for non-export-controlled and platform-independent
testing, and serves as an example for implementors of new
crypto modules.

The Certificate Library implements a simple certificate is-
suing and verification functionality for certificates and cer-
tificate chains in a hierarchical model. The content of the
certificates is taken from the X.509 [30] specification.

For a complete set of ZiP documentation, check our web
server on http://www.zurich.ibm.com/Technology/Security/extern/ecommerce/iKP_overview.html.

H. Deployment

At Europay’s Annual Members’ Meeting in Seville,
Spain, in June 1996, Europay and IBM jointly ran a small-
scale trial allowing visitors to the conference to use their
pre-loaded Europay CLIP purse card to make secure inter-
net payments from a card reader-equipped terminal. The
payment scheme used was an integration of CLIP card
payment functionality with ZiP-3KP, resulting in a secure
scheme for Internet payments from pre-loaded purses.

From April 1997 till February 1998, the EMP (Electronic
Market Place) project in Japan, funded by MITI (Ministry
of International Trade and Industry), deployed ZiP-3KP in
a trial with 5 on-line merchants and 2000 users. Each user
received a smartcard storing his/her ZiP account (keys
and certificates), allowing secure Internet purchases from
public kiosks and terminals.

ZiP is also the payment technology behind the I-Pay
payment product offered by Interpay Nederland and the
Dutch banks. I-Pay was launched as a trial in June 1996,
offering debit-type purchases from twenty on-line shops, us-
ing ZiP-3KP. Later, Eurocard/Mastercard credit card pay-
ments were added to the I-Pay brand. Currently I-Pay is
accepted by 80 on-line merchants and has a user base of
17000 users. In line with initial plans to use iKP only

for the initial trial and to move to the more standardized
SET [5] technology once available and accepted, a phased
transition is currently replacing ZiP technology with SET
technology.

Acknowledgements

We thank Phil Janson and Mark Linehan for helpful
discussions, and José L. Abad Peiro, Hans Granqvist and
Steen Larsen for their contributions to the implementation
of iKP/ZiP.

References

[1] Paul Wallich, “Cyber view: How to steal millions in champ
change,” Scientific American, pp. 32–33, August 1999.

[2] Ross Anderson, “Why cryptosystems fail,” Communications of
the ACM, vol. 37, no. 11, pp. 32–41, Nov. 1994.

[3] Alan O. Freier, Philip Kariton, and Paul C. Kocher, “The SSL
protocol: Version 3.0,” Tech. Rep., Internet Draft, 1996, Will
be eventually replaced by TLS[7].

[4] Stephen Kent and Randall Atkinson, “Security architecture for
the Internet Protocol,” Internet RFC 2401, Nov. 1998.

[5] Mastercard and Visa, SET Secure Electronic Transac-
tions Protocol, version 1.0 edition, May 1997, Book One:
Business Specifications, Book Two: Technical Specification,
Book Three: Formal Protocol Definition. Available from
http://www.setco.org/set specifications.html.

[6] N. Asokan, Phil Janson, Michael Steiner, and Michael Waidner,
“State of the art in electronic payment systems,” IEEE Com-
puter, vol. 30, no. 9, pp. 28–35, Sept. 1997, A Japanese trans-
lation of the article appeared in pp 195-201, Nikkei Computer
(http://nc.nikkeibp.co.jp/jp/) issue of March 30, 1998.

[7] Tim Dierks and Christopher Allen, “The TLS protocol version
1.0,” Internet RFC 2246, Jan. 1999.

[8] William R. Cheswick and Steven M. Bellovin, Firewalls and In-
ternet Security – Repelling the Wily Hacker, Professional Com-
puting Series. Addison-Wesley, 1994, ISBN 0-201-63357-4.

[9] Pau-Chen Cheng, Juan Garay, Amir Herzberg, and Hugo
Krawczyk, “A security architecture for the internet protocol,”
IBM Systems Journal, Special issue on the Internet, vol. 37, no.
1, pp. 42–60, 1998, Updated version of [31].

[10] N. Asokan, Victor Shoup, and Michael Waidner, “Asyn-
chronous protocols for optimistic fair exchange,” in Pro-
ceedings of the IEEE Symposium on Research in Security
and Privacy, Oakland, CA, May 1998, Research in Se-

http://www.zurich.ibm.com/Technology/Security/extern/ecommerce/iKP_overview.html

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 17

curity and Privacy, pp. 86–99, IEEE Computer Society
Press, A minor bug in the proceedings version was fixed.
An errata sheet, distributed at the conference, is available at
http://www.zurich.ibm.com/Technology/Security/publications/1998/ASW98-e\%rrata.ps.gz ;
A related paper [32] is available as well.

[11] N. Asokan, Fairness in Electronic Commerce, Ph.D. thesis,
University of Waterloo, May 1998.

[12] Ron Rivest, “The MD5 message-digest algorithm,” Internet
RFC 1321, Apr. 1992.

[13] NIST National Institute of Standards and Technology (Com-
puter Systems Laboratory), “Secure hash standard,” Federal
Information Processing Standards Publication FIPS PUB 180-
1, Apr. 1995.

[14] Mihir Bellare, Ran Canetti, and Hugo Krawczyk, “Keying hash
functions for message authentication,” in Advances in Cryp-
tology – CRYPTO ’96. 1996, number 1109 in Lecture Notes in
Computer Science, pp. 1–15, Springer-Verlag, Berlin Germany.

[15] Hugo Krawczyk, “Blinding of credit card numbers in the SET
protocol,” in Proceedings of the 3rd Conference on Financial
Cryptography (FC ’99), Anguilla, British West Indies, Feb 1999,
International Financial Cryptography Association (IFCA).

[16] Mihir Bellare and Phillip Rogaway, “Optimal asymmetric en-
cryption – how to encrypt with rsa,” in Advances in Cryptology
– EUROCRYPT ’94, I.B. Damgard, Ed. 1994, Lecture Notes
in Computer Science, pp. 92–111, Springer-Verlag, Berlin Ger-
many, final (revised) version appeared November 19, 1995.

[17] Ronald Cramer and Victor Shoup, “A practical public key
cryptosystem provably secure against adaptive chosen cipher-
text attack,” in Advances in Cryptology – CRYPTO ’98, Hugo
Krawczyk, Ed. Aug. 1998, number 1462 in Lecture Notes in
Computer Science, pp. 13–25, Springer-Verlag, Berlin Germany.

[18] Eui-Suk Chung and Daniel Dardailler, “Joint electronic payment
initiative (jepi),” White paper, JEPI, Apr. 1997.

[19] Michael Waidner, “Development of a secure electronic mar-
ketplace for Europe,” in Proceedings of the Fourth Eu-
ropean Symposium on Research in Computer Security (ES-
ORICS), E. Bertino, H. Kurth, G. Martella, and E. Monto-
livo, Eds., Rome, Italy, Sept. 1996, number 1146 in Lecture
Notes in Computer Science, Springer-Verlag, Berlin Germany,
also published in: EDI Forum 9/2 (1996) 98-106, see also
http://www.semper.org .

[20] SEMPER Consortium, “Final report of project SEMPER,” De-
liverable D13 of ACTS project AC026, Aug. 1999, To appear in
the LNCS Series, Springer Verlag.

[21] Shai Halevi and Hugo Krawczyk, “Public-key cryptography and
password protocols,” ACM Transactions on Information and
System Security, vol. 2, no. 3, pp. 25–60, 1999, Preliminary
version in Proc. of the 5th ACM Conference on Computer and
Communications Security, 1998, pp. 122-131.

[22] Ralf Hauser, Michael Steiner, and Michael Waidner, “Micro-
payments based on iKP,” Research Report 2791 (# 89269),
IBM Research, Feb. 1996.

[23] Steve Glassman, Mark Manasse, Martin Abadi, Paul Gauthier,
and Patrick Sobalvarro, “The millicent protocol for inexpensive
electronic commerce,” in Fourth International Conference on
the World-Wide Web, MIT, Boston, Dec. 1995.

[24] Benjamin Cox, J. D. Tygar, and Marvin Sirbu, “NetBill secu-
rity and transaction protocol,” In First USENIX Workshop on
Electronic Commerce [33].

[25] Steen Larsen, Zurich iKP Prototype (ZiP): iKP Transaction
Layer Functional Specification, IBM Zurich Research Labora-
tory, May 1996.

[26] Ralf Hauser and Michael Steiner, “Generic extensions of WWW
browsers,” In First USENIX Workshop on Electronic Commerce
[33], pp. 147–154.

[27] Gene Tsudik, “Zürich iKP prototype: Protocol specification
document,” Research Report RZ 2792, IBM Research, Feb. 1996.

[28] Els Van Herreweghen, Zurich iKP Prototype (ZiP): Certificate
Library (CERT) Specification, IBM Zurich Research Laboratory,
Feb. 1996.

[29] Michael Steiner, Zurich iKP Prototype (ZiP): Cryptographic
Library Specification, IBM Zurich Research Laboratory, Mar.
1996.

[30] ISO/IEC, “Information technology - open systems interconnec-
tion - the directory: Authentication framework,” June 1994,
same as ITU-T Rec X.509.

[31] P. Chen, J. Garay, A. Herzberg, and H. Krawcczyk, “Design
and implementation of modular key management protocol and

IP Secure Tunnel on AIX,” in Proc. 5th USENIX UNIX Security
Syposium, Salt Lake City, Utah, June 1995.

[32] N. Asokan, Victor Shoup, and Michael Waidner, “Optimistic
fair exchange of digital signatures,” in Advances in Cryptol-
ogy – EUROCRYPT ’98, Kaisa Nyberg, Ed. 1998, number 1403
in Lecture Notes in Computer Science, pp. 591–606, Springer-
Verlag, Berlin Germany.

[33] USENIX, First USENIX Workshop on Electronic Commerce,
New York, July 1995.

Contents

I Introduction and Overview 1

II History and Related Work 2

III iKP Payment Model 3

IV Security Requirements 4

V The iKP Protocol Family 6
V-A 1KP . 8
V-B 2KP . 10
V-C 3KP . 11
V-D Comparison of the iKP protocols 11

VI ZiP: Implementation and Deployment 12
VI-AProtocol scenarios 12
VI-BPayment Authorization 12
VI-CSeparate Payment Clearance/Capture . . . 14
VI-DRefunds . 14
VI-E Inquiry . 14
VI-F Implementation rationales and explanations 14
VI-GArchitecture 15
VI-HDeployment 16

A The Encryption Function 19
A-A Payload . 19
A-B Encryption process 19
A-C Decryption process 19

List of Figures

1 Generic model of a payment system 3
2 Keys and cryptograhic primitives used in iKP protocols 6
3 Definitions of atomic fields used in iKP protocols 7
4 Framework of iKP protocols 7
5 iKP Protocols 9
6 ZiP Payment Authorization 13
8 ZiP: Inquiry protocol 14
7 ZiP: Clearance protocol 15
9 ZiP implementation architecture 16
10 Sizes of fields in EncSlip 19
11 Encryption using OAEP 19
12 Hash-function H1 for OAEP 19
13 Hash-function H2 for OAEP 20
14 Decryption using OAEP 20

http://www.zurich.ibm.com/Technology/Security/publications/1998/ASW98-e% rrata.ps.gz
http://www.semper.org

18 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

Mihir Bellare received his BS (in Mathemat-
ics) from the California Institute of Technology
in 1986, and his Ph.D (in Computer Science)
from the Massachusetts Institute of Technol-
ogy in 1991. He worked at IBM before taking
a faculty position at the University of Califor-
nia at San Diego. He is a recipient of a David
and Lucile Packard Fellowship in Science and
Engineering, and a NSF CAREER award. His
research areas are cryptography and complex-
ity theory. He is one of the designers of HMAC

(an Internet standard for message authentication) and of OAEP (an
RSA based encryption scheme currently being proposed to replace
RSA PKCS #1). He has published about 40 papers in cryptography
(including 26 in the Crypto and Eurocrypt conferences) and about
20 in complexity theory.

Juan A. Garay received his Ph.D. in Com-
puter Science from Penn State University in
1989. He also holds the degree of Electri-
cal Engineer from the Universidad Nacional de
Rosario in Argentina, and a Master’s in EE
from the Netherlands Universities Foundation
(PII) in Eindhoven, Holland. He has been with
the Secure Systems Research Department of
Bell Labs since 1998. From 1990 until 1998
he was with IBM’s T.J. Watson Research Cen-
ter. In 1992 he was a postdoctoral fellow at

The Weizmann Institute of Science in Israel, and in 1996 a visiting
scientist at the Centrum voor Wiskunde en Informatica (CWI) in
Holland. Dr. Garay has published extensively in the areas of al-
gorithms, distributed computing, fault tolerance, and cryptographic
protocols.

Ralf Hauser holds a M.Sc. in Computer
Science from the University of Toronto and a
Ph.D. from the University of Zurich. From
1992-1995 he worked as a researcher with the
IBM Research Laboratory in Zurich in the field
of network security and since, he is a consul-
tant with McKinsey & Co. Since December
1998, he is building for the recently founded
McKinsey Business Technology Office a Global
Knowledge Management Team (Service and In-
frastructure).

Amir Herzberg received the B.Sc. (Com-
puter Engineering), M.Sc. (Electrical Engi-
neering) and D.Sc. (Computer Science) de-
grees from the Technion – Israel Institute of
Technology, in 1982, 1986, and 1991, respec-
tively. Since 1991, he is with the IBM Re-
search Division, currently as manager of the E-
Business and Security Department at the Haifa
Research Lab. Previously he managed Net-
work Security at the Watson Research Center.
He has authored numerous papers and patents.

His research areas include electronic commerce, network security, ap-
plied cryptography, communication protocols and fault tolerant dis-
tributed algorithms.

Hugo Krawczyk is an associate professor
at the Department of Electrical Engineering,
Technion, Israel, and a visiting scientist at the
IBM T.J. Watson Research Center. He re-
ceived his Ph.D. in Computer Science from the
Technion, Israel, in 1990. From 1991 to 1997
he was a research staff member in the Cryp-
tography and Network Security Group at the
IBM T.J. Watson Research Center. His areas
of interest span applied and theoretical aspects
of cryptography with particular emphasis on

applications to network security. In particular he has been a co-
designer of the HMAC authentication function, the IKE key exchange
protocol for IPSEC, and of the SET protocol for secure credit card
transactions over the Internet.

Michael Steiner is a research scientist at the
Department of Computer Science, Universität
des Saarlandes, Saarbrücken and in the net-
work security research group at the IBM Zurich
Research Laboratory. His interests include se-
cure and reliable systems as well as cryptogra-
phy. He received a Diplom in computer science
from the Swiss Federal Institute of Technology
(ETH) in 1992 and expects to receive a Ph.D.
in computer science from the Universität des
Saarlandes, Saarbrücken.

Gene Tsudik is a project leader at USC/ISI
and a research associate professor in the Com-
puter Science Department at USC. His re-
search interests include network security, ap-
plied cryptography and routing in wireless net-
works. He received a Ph.D. in Computer Sci-
ence from USC in 1991 and spent the next
five years at IBM Research working on se-
cure systems, protocols, mobile networks and
electronic commerce. At USC, he teaches
courses in Cryptography, Computer Security

and Wireless Networks.

Els Van Herreweghen received a degree in
Chemical Engineering (Ingenieur Scheikunde
en Landbouwindustrieën) and a Master’s de-
gree in Computer Science (Licentiaat Infor-
matika) from the Katholieke Universiteit Leu-
ven, Belgium, in 1988 and 1992, respectively.
Since 1992, she has been a Research Staff Mem-
ber in the Network Security group at the IBM
Zurich Research Laboratory, Switzerland. Her
current research focuses on security issues re-
lated to electronic commerce.

Michael Waidner is the manager of the net-
work security research group at the IBM Zurich
Research Laboratory. His research interests in-
clude cryptography, security, and all aspects
of dependability in distributed systems. He
has coauthored numerous publications in these
fields. Dr. Waidner received his diploma and
doctorate in computer science from the Univer-
sity of Karlsruhe, Germany.

BELLARE ET AL.: Design, Implementation and Deployment of the iKP Secure Electronic Payment System 19

Appendix

I. The Encryption Function

iKP requires the buyer to encrypt the SLIP as part of the
Payment message. (The sole exception to this is when both
the PFLAGS:noEnc and the PFLAGS:SIG B option flags
are set.) In this section we describe the implementation of
OAEP [16], the encryption function used by iKP/ZiP.

A. Payload

Encryption is always performed using the encryption
public key of the acquirer–PKEA—for the Payment mes-
sage. It is assumed that PKEA has a modulus size of at
least 1024 bits. The format of the linearized (encoded)
SLIP to be encrypted is as follows:

SLIP = [AUTHPRICE,H(Common), BAN, RB,
[SALTC |PIN], EXPIRATION, PADDING]

Fields within SLIP are described in Figure 5. The sizes
of these fields are given in Figure 10. All of the above
components are encoded into a 896-bit long string.

AUTHPRICE 64 bits

BAN 0-128 bits (128 bits can be used to en-
code up to 38 decimal digits. Current
credit cards are only 12 digits.)

EXPIRATION 32 bits

SALTC or PIN 0-64 bits (up to 19 decimal digits)

H(Common) 128 bits

RB At least 128 bits

PADDING length is the difference between 832 bits
and the sum (in bits) of all previous
fields.

Fig. 10

Sizes of fields in EncSlip

B. Encryption process

The actual encryption process is adapted from [16]. The
encryption function EA is based on RSA. We let f(x) =
xe (mod N) denote the RSA function and f−1(y) = yd

(mod N) its inverse, where N is a 1024 bit modulus. The
issue is that simply encrypting under RSA– ie. setting
E(x) = f(x)– is not enough: this doesn’t provide the “in-
tegrity” or “plaintext awareness” we need. Instead, we first
“embed” a up to 832-bit plaintext into a 1024 bit string r
in a special way and then compute f(r). The scheme we
now describe is a simplification of a OAEP scheme from
[16]. It makes use, in addition to RSA, of MD5 as the hash
functionH, and is provably secure assumingH behaves like
a “random function.”

The encryption process is illustrated in Figure 11 and
performs following steps:

SALTE

H1

H2

H1(SALTE)

⊕ ⊕

RSA Encrypt f

DATA
Random

ab

000 · · ·00

Fig. 11

Encryption using OAEP

1. Prepend 64 bits of zeros to 832 bits of DATA to form
x = [0 . . . 64x . . . 0, DATA].
2. Generate random 128-bit string SALTE .
3. Compute a = x⊕H1(SALTE).
4. Let b = SALTE ⊕H2(a).
5. Compute f(a, b) (combined length of a, b is 1024 bits).
H1 is a one-way function which expands data from one

block of 128 bits to 896 bits and is illustrated in Figure 12.
H2 is a one-way function which compresses data of size

896 to a block of 128 bits. See Figure 13 for its implemen-
tation.

1 2 3 4 5 60

MD5MD5MD5MD5MD5MD5MD5

OUTPUT

INPUTSTART(=0)

Fig. 12

Hash-function H1 for OAEP

C. Decryption process

The decryption process is illustrated in Figure 14 and
performs the following steps:
1. Compute (a, b) = f−1(ENCRYPTEDDATA).
2. Compute SALTE = b⊕H2(a).
3. Compute x = a⊕H1(SALTE).
4. Check for existence of 64 leading 0-s in x and obtain
DATA.

20 IEEE Journal of Selected Areas in Communications, VOL 18, NO. 4, April 2000

MD5

OUTPUT

INPUT

64 bits

Fig. 13

Hash-function H2 for OAEP

=?

SALTE

H1

H2

H1(SALTE)

⊕⊕

RSA Decrypt f−1

DATA

ab

000 · · ·00

XXX · · ·XX

Fig. 14

Decryption using OAEP

	Introduction and Overview
	History and Related Work
	iKP Payment Model
	Security Requirements
	The iKP Protocol Family
	1KP
	2KP
	3KP
	Comparison of the iKP protocols

	ZiP: Implementation and Deployment
	Protocol scenarios
	Payment Authorization
	Separate Payment Clearance/Capture
	Refunds
	Inquiry
	Implementation rationales and explanations
	Architecture
	Deployment

	The Encryption Function
	Payload
	Encryption process
	Decryption process

