Diplomarbeit

Development of a Prototype
for a Security Platform for
Mobile Devices

eingereicht von: Christian Stiible

geboren am: 31. Oktober 1973
geboren in: Hildesheim

Matrikel-Nr.: 66740

eingereicht am: 28. April 2000

Betreuerin: Prof. Dr. Birgit Pfitzmann
Gutachter: Prof. Dr. Joachim Biskup

[o=t/)

k¥l am
uuy uyy
juut A=Y U

w//

muRAR

TRAN

TARN
Universitdt Dortmund, Universitat des Saarlandes,
Lehrstuhl fiir Informations- Lehrstuhl fiir Kryptogra-

systeme und Sicherheit phie und Sicherheit

Danksagungen

Ich mo6chte mich bei allen bedanken, die mich bei meiner Arbeit unterstiitzt haben!
Zuallererst natiirlich bei meinen Eltern Monika und Wolfgang Stiible, die mich
wahrend meiner gesamten Ausbildung begleitet and motiviert haben. Ohne ihre
Unterstiitzung wire weder mein Studium, noch diese Diplomarbeit méglich gewesen.

Herzlich bedanken mdchte ich mich auch bei allen Mitgliedern der ISSI Gruppe
der Universitdt Dortmund und des Lehrstuhls fiir Kryptographie und Sicherheit
der Universitdt Saarbriicken, insbesondere bei meiner Betreuerin Prof. Dr. Birgit
Pfitzmann, bei Prof. Dr. Joachim Biskup, Matthias Schunter und Tom Beiler.

Sehr hilfreich war auch die Unterstiitzung von Frank Mehnert vom Lehrstuhl
Betriebssysteme der Technischen Universitdt Dresden bei Fragen rund um den p-
kernel.

Letztendlich méchte ich mich fiir die gute Zusammenarbeit wahrend unserens
gesamten Studiums bei meinem Freund und Kommilitonen Ralph Kiihl bedanken.

Abstract

Security-critical applications such as homebanking, digitally signing documents
(using e.g. PGP) or various kinds of business over the Internet rely on the security
of all components involved. The main problematic components in the current prac-
tice are insecure operating systems, which provide only weak security policies and
are often very error prone.

Hence a secure kernel, small enough to be evaluated based on the Common Cri-
teria or ITSEC and running on a mobile personal device, is required. It must be able
to protect applications from each other and provide a trusted path between these ap-
plications and the user. However, user devices that do not offer the full functionality
of a widespread operating system seem unmarketable.

Therefore we propose to run a Client OS as one encapsulated application on
the secure kernel. Moreover, by using the Client OS judiciously to perform non-
critical tasks, the size of the secure kernel can be significantly reduced compared to
a stand-alone secure system.

In this diploma thesis, a first design and prototype of such a secure kernel, called
PERSEUS, is presented. It is based on the F1ASCO microkernel and runs LINUX as
Client OS. The implementation contains all components to securely sign documents
created under LINUX.

ii

iii

»If you wait for a complete and perfect concept to germinate in your mind, you
are likely to wait forever.«

DEMARCO

iv

Contents

List of Figures

List of Tables

1 Introduction

1.1 Objectives e
1.2 Related Work
1.3 Limits e e e e e e e
1.4 Fundamentals e
1.4.1 Fonts
142 Naming e
1.4.3 Software-Development
1.44 Concepts oo e
1.45 Patternso
1.4.6 Microkernel
1.4.7 Subsystem
1.4.8 Session e e
1.5 Overview o . i e e e e e e e e e

2 Requirements Analysis

2.1 Functional Requirements
2.2 Use Cases . . . v v v i i it e e e
2.2.1 Use Case: Signinganemail
2.2.2 Use Case: Generation of a new key pair
2.2.3 Use Case: Installing new services/applications
2.2.4 Use Case: Updating a system service
2.2.5 Use Case: Opening asession
2.2.6 Use Case: Closingasession
2.2.7 Use Case: Activate system
2.2.8 Use Case: Deactivate system
2.29 UseCase: Rollback
2.2.10 Use Case: Enforcing local security policies
2.2.11 Conclusiono
2.3 Security Requirements
2.3.1 Access Control
2.3.2 Roles e
3 System Definition
3.1 The Common Criteria
3.1.1 Imtroduction
3.1.2 Class FAU: Security audit
3.1.3 Class FCO: Communication

ix

%
=,

N~ OO O OUUU R W N

10
10
10
10
11
11
11
11
11
11
12
12
13
13
13

vi

CONTENTS

3.1.4 Class FCS: Cryptographic support 16
3.1.5 Class FDP: User data protection 17
3.1.6 Class FIA: Identification and authentication 19
3.1.7 Class FMT: Security management 21
3.1.8 Class FPR: Privacy 23
3.1.9 Class FPT: Protection of the TSF 24
3.1.10 Class FRU: Resource utilization 27
3.1.11 Class FTA: TOE access o o i v i it oo .. 28
3.1.12 Class FTP: Trusted path/channels 29
3.2 Analysisof Use Cases 29
3.2.1 Signinganemail L0000 29
3.2.2 Generation of anew key pair 30
3.2.3 Opening/Closing asession 31
3.2.4 Activate/Deactivate System Lo L. 31
3.2.5 Installation of new Software 32
3.2.6 Updatinga Service 32
3.2.7 Rolling back the System State 33
3.2.8 Enforcing Local Security Policies 33
3.3 Analysis of Security Requirements 33
3.3.1 Client OS 33
3.3.2 Persistent Storage o o 34
3.3.3 Providing Independence Between Subsystems 35
334 Secure Booting oo 37
34 Packages. e 38
3.4.1 Package: Subsystem 0oL 38
3.4.2 Package: AccessControl 38
3.4.3 Package: Information Flow Control 40
3.4.4 Package: ResourceManagement 41
3.4.5 Package: SubsystemManagement 41
3.4.6 Package: Crypto 44
3.4.7 Package: KeyManagement 44
3.4.8 Package: TrustedPath 44
3.4.9 Package: CommunicationPath 46
3.5 OOAmodel e 49
Design 53
4.1 General Assumptions on the Underlying Components 53
4.2 The Fiasco Microkernel 53
4.3 General Design Decisions 54
4.3.1 Methods and Interfaces 55
4.3.2 Separate interfaces and protocol implementations 55
4.4 Package: Access Control 57
4.4.1 Global Security Policy 58
4.4.2 Access Control Lists 58
4.4.3 Reference Mapping oo 58
444 Global Nameso v it 60
4.4.5 Increase Granularity of Access Control 60
4.4.6 Alternative Approach to Control Access 60
4.4.7 Hierarchical Access Control 61
4.5 Package: ResourceManagement 63
4.5.1 How to Provide a Virtual Hardware Layer? 63
4.5.2 Package: MemoryPager 64
4.5.3 Package: PortManager 68

4.5.4 Package: DisplayManager 69

CONTENTS

4.6 Package: SubsystemAuthentication
4.7 Package: TrustedGUT.
4.8 Package: CommunicationPath

4.8.1
4.8.2

Router e
Virtual Network Device

4.9 Package: SubsystemManagement

49.1
4.9.2
4.9.3
494

TaskManager
Package: Installer
Package: DerivationService
Conclusion L

4.10 Package: Loader
4.11 Package: Random o
4.12 Package: Utilities L
4121 Class: Heap o . i
4.12.2 Class: ThreadManager
4123 Class: Pager
4124 Class: Thread
413 O0OD Model

Implementation

5.1 Instead of a Developer’s Manual

5.1.1
5.1.2
5.1.3
5.14
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

Some Hints on Development
Directory Structure
Automake/Autoconf Lo Lo oL
Creating the Reference Manual
Writing Secure Applications
Utility Classes« o v i i it ittt e
Packet: AccessControl,
Packet: ResourceManagement
Package: TrustedPath

5.1.10 Package: CommunicationPath
5.1.11 Package: KeyManagement
51.12 OOP Model
5.2 Instead of a User’s Manual

5.2.1
5.2.2

Installation
Using oo e

5.3 Conclusion and Future Work

System Requirements Specification

Al Purposeo
A2 Functions
A3 Properties e

A.3.1
A.4 Tests

Protection Profile

System Definition

B.1 Purpose
B.2 System Environment
B.3 Security Requirementso oL

B.3.1
B.3.2
B.3.3
B.3.4
B.3.5

Security Target(s)
Cryptographic Support
User data protection
Identification and Authentication
Security managemento ...

vii

viii

B.3.6
B.3.7
B.3.8
B.3.9

B.3.10 Miscellaneous
B.4 System Functions
B.5 System Data
B.6 User friendlyness and flexibility
B.7 Quality Demands
B.8 Test scenarios
B.9 Development Environment

Protection of the TSF

Resource allocation
TOE access

Trusted path/channels

C Abbreviations

D Glossary

E Contents of the CD-Rom

Bibliography

Index

CONTENTS

115
119
121

124

List of Figures

1.1

1.2
1.3

14
1.5

2.1
2.2
2.3

3.1
3.2
3.3

3.4

3.5
3.6

3.7
3.8

3.9

3.10
3.11
3.12
3.13

3.14
3.15
3.16

4.1

4.2
4.3
4.4
4.5
4.6

Software architecture suggested by the preliminary PERSEUS archi-
tecture [21].o

A secure operating system kernel protects security-related information.

Function tree: Function parent () calls or contains three child func-
tionsa(),bQandc().
Expressions of program control structures.
Minimized microkernel (red, protected mode) and system services
(yellow, user mode). L Lo

Use cases and related roles.
Access control protects and controls objects/programs.
Suggestion of a simple role hierarchy.

Data-flow while signing an ASCIT text.
Abstract model of a traditional operating system.
System design if a virtual hardware layer is inserted between micro-
kernel and Client OS.
System design if the device drivers are separated into tasks of the
microkernel. L e e
Components of the Subsystem package.
Example scenario describing relations between subsystems, services,
interfaces and versions.o
Components of the AccessControl package.
Components and their dependencies of the ResourceManagement pack-
Y Y
Contents of the SubsystemManagement package.
Components of the Crypto package.
Components of the KeyManagement package.
Components and subpackages of the TrustedPath package.
Internal communication path if a) Linux and b) the secure environ-
ment controls the network device..
Classes of the CommunicationPath package between subsystems. . . .
System model after analysis phase.
The OOAmodel.

Tllustration of the modified UML syntax: Two threads are used to
provide three inherited interfaces.
Design of separation of interface and protocol.
Dependencies between Manager and Services.
Real and virtual data flow between sender and receiver.
ACDF related classes of the AccessControl package.
Design of the class ACEF.

ix

12
13
14

30
35

35

36
38

39
40

41
43
44
44
47

48
48
49
51

55
56
56
58
58
59

4.7
4.8
4.9
4.10
4.11
4.12

4.13
4.14

4.15
4.16

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25

4.26
4.27

4.28
4.29
4.30
4.31

5.1
5.2

5.3
5.4
5.5

LIST OF FIGURES

Alternative access control model using role proxies. 61
Hierarchical access control using clans & chiefs. 62
Task hierarchy of the scenario of Figure4.8. 62
A caching service increases performance. 63
Dependencies between different pagers. 64
Address space (a) before and (b) after copy-on-write, and (c) after

overwriting the original mpage. 66
Required mpages and ppages to build a persistent system. 66
Program control structures of the load_page() and backup() oper-

ation. e e e e 67
Components of the X Windows System. 70
The three colored lines describe possible interfaces between untrusted

and trusted components. Lo 71
Components of the CommunicationPath package. 72
Control structure of a ping command invoked by LINUX. 73
Design of the class TaskManager. 74
Contents of the content description. 75
Design of the Installer package., 75
Contents of the content-certificate. 76
Overview of components of the SubsystemManagement package. . . 77
Design model of the package Loader. 78
Sequence diagrams if a) a new protocol is added and b) the Loader-

Manager is invoked to load new data. 78
Design of the Random package., 79
Scenario if a user extends the system-wide random service by his/her

OWN SOUFCE. o o i i it e e e e e e 79
Design of the class Heap. 80
Methods of the class Thread., 81
Layers of the design model. 81
Components of the OOD model. 83
Classes and their relations of the Heap implementation. 87
Hierarchical dependency of the public method allocMemory () of the

class Heap. 88
Static model of the Userinterface subsystem. 91
Components of the TrustedGUI package. 92

Components implemented sofar. 95

List of Tables

2.1

3.1

4.1

5.1
5.2

B.1
B.2

Example file-operations provided by a file system service. 12
List of widgets the trusted GUI has to provide. 45
Two new IPC Messages used by the RMGR to assign/release I/0O

port access to other tasks. oL 68
Important LINUX kernel files which initialize the console driver(s). . 91

Hardcoded start addresses and length of all implemented subsystems. 97

Hardware used as develop environment. 110
Software used for development. 111

xi

xii LIST OF TABLES

Chapter 1

Introduction

Electronic commerce and in general internet-based information technology grows
fast and security and privacy is essential for those applications. At this point of
time a handful usable solutions and certified implementations of important compo-
nents like digital signatures and electronic payment systems are already available.
Nevertheless all these systems cannot become more secure than the underlying op-
erating system.

Malicious applications (trojan horses and viruses) are able to break into nearly
all publicly available operating systems, to modify or spy out especially security-
related software and data, even if the user or administrator has made no errors. Even
smartcards cannot solve this problem, because untrusted operating systems act as a
software layer between user and smartcard interface and process user authentication
software. Therefore a secure environment is required which is able to provide a
trusted path between users and secure components.

This is the main goal of the PERSEUS! (Pervasive security for us) project.
Its basic idea is to use existing devices and operating systems and extend them
by means of a trusted secure environment which separates user processes, controls
the communication between them and enforces security policies. Both, porting an
existing operating system to the security kernel and developing secure applications
which are separated from the operating system is required. To simplify development
of secure applications the secure environment shall provide a framework containing
simple implementations of basic functionalities. Simplicity is necessary to make
evaluation of security-related components possible. Example evaluation criteria are
the Common Criteria [37], which partially need formal techniques to evaluate higher
security levels.

The proposal of the PERSEUS project [21] suggests a detailed software architec-
ture of the secure environment, illustrated by Figure 1.1. It informally describes ap-
proximately twelve components, their contents and relations. Modules between the
red and yellow line which provide basic functionality are called the secure platform
(SP). Tt uses functions of the u-kernel, which abstracts hardware-dependent prop-
erties (below red line). Above the yellow line an existing operating system, (hence)
called Client OS, runs as one task of the u-kernel. Also an application framework
which provides support to secure applications (above green line) is planned. All
security-related layers together, hardware, p-kernel, secure platform, application
framework and secure applications, are called secure environment (SE).

Ihttp://www.semper.de/sure

2 CHAPTER 1. INTRODUCTION

Secure applications

Existing Sec. App Digital Secure Stock
Apps Support sign. mail trading etc
) Green
Line
Access
PKI cul Control
etc.
Existing OS Application Framework
Yellow
Line
Installer Storage User Auth User IO Backup
€etc.
Secure Platform

Red
Line

‘ Microkernel ‘

‘ Hardware ‘

] Pretended components
[] To be developed

Figure 1.1: Software architecture suggested by the preliminary PERSEUS architec-
ture [21].

1.1 Objectives

A personal digital assistant (PDA) or other IT products represent subjects (users)
in a digital IT environment. The products are supposed to act in the interest of
the user who is the only one who can lay down whether, and how, the IT product
represents the user to the rest of the world. This property is generally called the
right of informational self-determination. In order to be able to guarantee this right
some requirements have to be fulfilled by the IT product:

1. It has to protect components (applications, services, etc.) from each other.

2. Absence of undesirable functions.

The first requirement is summarized by the term security of the IT product. This
means that it has to provide confidentiality, integrity, availability and reliability and
should neither by external attacks, nor by internal errors be made to act in other
ways than defined by its specifications.

The second requirement significantly depends on the trust in the agreement of
the specification and the implementation. The past has shown that the agreement
rarely applies. Nearly all applications and operating systems have bugs, some pro-
grams send user-information to their developers [29], others have undocumented
certification keys which make it possible to bypass security-barriers and replace
security-related software [28]. To create and increase trust in the IT product the
following five conditions have to be fulfilled:

1. Functional and security-related system requirements have to be defined.
2. The system functions have to be specified based on these requirements.

3. It has to be checked that specified system functions can fulfill demanded
system requirements.

1.2. RELATED WORK 3

4. Tt has to be checked that specified and implemented system functions are
equal.

5. The user (or a trusted third party) has to verify and evaluate development
steps of condition 2, 3 and 4.

In general a user or group of users defines the requirements on the IT product,
then developers have to fulfill condition 2-4. To make evaluation and comparison
of systems possible for users or trusted third parties, developers could, e.g., use the
Common Criteria for Information Technology Security Evaluation (see Section 3.1).
Further steps which increase the trust in IT products are to make the development
steps and/or the source code publicly available (open source) or to modularize the
system to make it possible for users to select/exchange specific modules.

In the past, a lot of successful attempts have been made to develop provable
secure operating systems from scratch. The problem of these systems is that they
are binary- and interface-incompatible to existing operating systems. Thus users
have to get accustomed to new environments and nearly all applications need to
be rewritten. This may be a reason why these secure operating systems live in the
shadow.

To avoid this problem the main goal of the PERSEUS project, and thereby of
this diploma thesis, is to develop a secure operating system kernel which executes
as one task an existing operating system (Client OS) which itself provides users
and developers a well-known environment (Figure 1.2).

 Interfaces |

T
‘1/ [0 Existing Operating System
—
1 secure Kemnel
Protected Data —> Access

Figure 1.2: A secure operating system kernel protects security-related information.

Also the secure kernel takes over all security-related functions and protects
security-related system and user data which can only be accessed by means of a
defined set of interfaces. Besides the secure kernel is able to enforce its own security
policy, independent of the existing operating system.

1.2 Related Work

Similar architectures which provide functionality for electronic commerce applica-
tions are SEMPER [24] and the Java Commerce Client [45]. However, they are
based on a complete operating system and do not consider restrictions of evalua-
tion criteria of high security levels. Thus the extent of the PERSEUS functionality
has to be much smaller.

The approach to use an existing operating system based on a microkernel and
provide additional service modules related to the microkernel, as suggested by pre-
liminary PERSEUS architecture, has been successfully performed by two other
projects:

4 CHAPTER 1. INTRODUCTION

The RT-LINUX Project? of the University of New Mexico uses a small kernel to
provide real-time processes in parallel to the LINUX operating system [6]. Also the
DROPS project®, which uses the L4/FiAsco u-kernel and an adapted L4-LINUX
[27] [20] provides real-time processes.

Based on a predecessor of the L4 u-kernel, L3, a persistent environment is real-
ized providing separated mutual protected DOS clients [26]. This approach is taken
up in Section 4.5.2.1.

1.3 Limits

To develop the entire PERSEUS project a lot of man-years are estimated. Thus
this diploma thesis is only a very small part of the whole project. The goal of this
diploma thesis is to develop the first prototype to help evaluating design-decisions
early by means of prototypes. Because of the limited time most of the components
will contain only dummy implementations. Howeverthe focus will remain on defini-
tions of flexible interfaces and a good documentation of design decisions to be able
to refine the model without global modifications and to use it as a starting point
for discussions, extensions and improvements.

Although the PERSEUS project aims to develop a secure environment for mobile
devices, implementations of this diploma thesis shall be based on a standard PC.
It is planned to use the F1asco* microkernel as the lowest software layer, which is
available for free at the University of Dresden, a PERSEUS member which provides
support. A F1IASCO port of the LINUX® operating system is available there® also.

Since software evaluation needs not to be considered by this prototype, no con-
crete design restrictions need to be obeyed.

1.4 Fundamentals

This section contains short explanations of fundamental concepts and definitions of
terms used in this paper.

1.4.1 Fonts

This diploma thesis uses various scriptings to make reading of this document easier.

Glossary Terms which have been added to the glossary (Appendix D) are marked
using italics.

Classes and Packages Classes and packages (groups of classes) are written using
sans-serif scripting.

Attributes, variables, functions, methods and sourcecode Attributes of classes,
programming examples, variables and functions are written in courier.
To distinguish attributes and functions, the latter are marked by two
brackets at the end of the name.

ROLES Roles have been marked using only capital letters.

2http://rtlinux.cs.nmt.edu/ rtlinux
3http://os.inf.tu-dresden.de/drops
4http://os.inf.tu-dresden.de/fiasco
Shttp://www.linux.org
Shttp://os.inf.tu-dresden.de/L4Linux

1.4. FUNDAMENTALS 5

1.4.2 Naming

Names of classes, packets, functions, methods and attributes have been selected
according to UML suggestions, if possible.

Every word of names of classes and packages starts with a capital letter without
underscores between words. The first word of attribute and function names begins
with a small letter, other words with a capital letter. Examples: MyPacket, MyClass,
myAttribute and myFunction().

1.4.3 Software-Development

Different approaches to develop software products exist and a lot of books have been
written which all represent the “best” way to do so. HELMUT BALZERT presents
in [5] a good and easy to understand overview of aspects common and different to
some of these concepts. This diploma thesis uses the object-oriented (OO) approach,
because it is currently a very common way of software-development; further concepts
have been used whenever this made it easier to express certain facts. A good
introduction to OO-software development is provided in [4].

The object-oriented approach divides development into three phases:

Object-Oriented Analysis. The main goal of the analysis phase is to deter-
mine and describe requirements and wishes of customers of the IT product to be
developed. It is important to know that design-decisions and implementation details
have to be ignored completely and it is assumed that technologies work perfectly.
At the end of the analysis phase an OOA model forms the conceptual solution of
the product of development.

Object-Oriented Design. The design phase has to realize the OOA model
and consider requirements and restrictions of used hard- and software components.
The main goal is to develop an OOD model while using efficiency and standards as
points of view.

Object-Oriented Implementation. Also known as Object-Oriented Program-
ming (OOP). The goal of this phase is to implement the OOD model under con-
straints and restrictions of programming languages and underlying components (op-
erating system, compiler, etc.). It is not absolutely necessary, though easier, to
use object-oriented programming languages to implement an object-oriented design
model. Thus object-oriented development steps can be re-used even if later versions
use non-O0 programming languages.

Decisions of the analysis and design phase have to be evaluated early by means
of prototypes to be able to make improvements and to recognize faults early. This
is the focusof this diploma thesis.

1.4.4 Concepts

Analysis and design models contain descriptions of static and dynamic relations
between elements which can be represented by a wide range of concepts. This
section mentions and explains, if necessary, those concepts which have been used in
this diploma thesis.

In order to express static and dynamic relations between elements of all three
development phases the Unified Modeling Language (UML), developed in 1997 by
BoocH, RUMBAUGH and JACOBSON [36], has been used. [35] contains an extensive
description of the Unified Modeling Language. The overall software architecture
is additionally represented similar to the figures of [21] to be able to illustrate
differences and commons.

Dependencies between functions of design or implementation models are ex-
plained by function trees. Nodes of a function tree, drawn as rectangles and as-

6 CHAPTER 1. INTRODUCTION

signed with a name, represent functions. A function is a parent of other functions
if its abstraction level is higher (“contains” or “calls”). Figure 1.3 shows an example

of a function tree.
par ent

| child a | | child b | | child c

Figure 1.3: Function tree: Function parent () calls or contains three child functions

a(),b() and c().

Further concepts have been used to describe dynamic concepts. In order to illus-
trate Program Control Structures (PCS), language-independent symbols defined by
DIN 66001 are used (see Figure 1.4). Data Flow Diagrams (DFD) according to DE-

loop 1
i fal se expressi on
expressi on
|_. - Narre
instruction (Argurrent)

|

instruction i i

instruction end
loop 1

Sequence Sel ection Loop Cal |

Figure 1.4: Expressions of program control structures.

MARCO [13] are used to describe flows and transformations of data and information
between functions, storage and interfaces.

1.4.5 Patterns

In general, patterns describe classes of problems and explain at least one general
solution of the problem. Patterns can be used in the analysis (analysis pattern),
design (design pattern) and implementation phase (implementation pattern) of soft-
ware development. Furthermore, patterns form abstractions which make communi-
cation between developers and understanding complex diagrams easier. According
to UML a pointed oval, which contains the name of the pattern, points to elements
which form a pattern and connects related components by means of lines. HEIDE
BALZERT explains in [4] some analysis patterns and GAMMA, HELM, JOHNSON and
VLISSIDES present in [16] a catalog of design patterns. A good starting point to
look for C++ implementation patterns are [44] and [33].

1.4.6 Microkernel

The phrase kernel is used to denote the part of the operating system that is manda-
tory and common to all other software. It often runs in privileged execution levels
and can therefore use all features of underlying hardware components (e.g. the
Processor).

Most early operating systems were implemented by means of monolithic kernels.
Loosely speaking, the complete operating system was packed into one kernel. In

1.5. OVERVIEW 7

contrast to this, the basic idea of the microkernel (or p-kernel) is to minimize
the kernel, which provides a general messaging system, and to implement whatever
possible as servers outside of the kernel (Figure 1.5). All servers, even device drivers,

M cr oker nel
ecurit
Manager

Figure 1.5: Minimized microkernel (red, protected mode) and system services (yel-
low, user mode).

run in user mode and are treated exactly like any other application. Since each
server has its own address space, all these objects are protected against each other.

1.4.7 Subsystem

A subsystem is the smallest execution unit that can be protected by the hardware
and it is similar to the protected domain defined by the Common Criteria in Section
3.1. In most cases a subsystem is a task that is protected from other tasks by virtual
address spaces.

Two subsystems S; and Sy are called independent if subsystem S; cannot be
disturbed or corrupted by subsystem Ss.

A communication channel between two subsystems S; and Sz provides integrity if
it can neither be corrupted nor eavesdropped by another subsystem Ss.

1.4.8 Session

A session indicates the time interval between user log-in (opening a session) and
log-out (closing a session). Accessing other subsystems than the login procedure is
only possible if users have opened a session.

Session Management means that underlying components store the session’s state
(e.g. the state of applications, position and contents of windows) if the session is
closed and restore them if the user opens a new session.

1.5 Overview

The structure of this document and the development-steps of the prototype are
mostly similar to the processes described in [5]. Chapter 2 summarizes descriptions
of functional requirements of the product under development, partially expressed by
use cases in Section 2.2. This chapter also contains informal descriptions of security
requirements from the user’s point of view.

8 CHAPTER 1. INTRODUCTION

The next chapter defines the system behaviour by functional analysis of use
cases and security-related examinations. Results of this chapter are expressed by
an OOA model in Section 3.5.

Design decisions are discussed in Chapter 4 which leads to an OOD model,
presented in Section 4.13.

Appendix A summarizes results of Chapter 2 and Appendix B contains a com-
plete list of functional and security-related requirements of Chapter 3. Finally,
Appendix C explains abbreviations used by this work and Appendix D contains a
glossary.

I tried to keep the analysis and design sections independent of designs and
decisions assumed by the PERSEUS proposal. At the end of each chapter the
current system model is compared with the model of the proposal (Figure 1.1) by
discussing important differences and commonalities.

Bear in mind that analysis, design and implementation of a software product
are iterative tasks, which cannot be represented in this linear document completely.
Therefore the next chapters contain only the latest version of appropriate develop-
ment phases.

Chapter 2

Requirements Analysis

A System Requirements Specification, short SRS, defines an abstract description of
the services and functions an IT product should provide and the constraints under
which it must operate, and it shall be written in such a way that it is understandable
by customers without special knowledge!. The main objective of this chapter is to
create a system requirements specification, which is appended in Appendix A.
Section 2.1 contains informal (user-view) descriptions of functions of the product
to be developed. Section 2.2 contains use cases which define the system behaviour
by user view. Many of them should be readable without special knowledge, but
some describe more specific cases which are important to motivate some security-
related requirements. Hasty readers may skip this section. Section 2.3 contains
informal descriptions of security demands, defines general requirements on access
control and defines a simple role hierarchy to be enforced by the security policy.
These definitions are required to use the Common Criteria (see Section 3.1)

2.1 Functional Requirements

This section contains informal descriptions of functional requirements of secure de-
vices by user view:

e The IT product should contain a Client OS which provides a usual environ-
ment to users and developers.

e It should contain a secure environment which can be used to store security-
related information and protects this information against external and internal
attacks.

e To protect them against internal attacks the secure environment should be
able to enforce its own security policy, independent of security policies of the
Client OS.

e Users should be able to refine access permissions concerning to their objects
without disturbing the security of the whole system.

e Users should be able to choose between security and usability, therefore the
system should not force users to use local security policies.

e Users should be able to use the system without experience in security. Thus
meaningful default values should be provided, but it should be possible for
individuals to change them.

1We will see that this is not possible in all cases, because development of an operating system
requires sometimes low-level knowledge.

10 CHAPTER 2. REQUIREMENTS ANALYSIS

e All functions which need access to security-critical information (e.g. secret
keys) have to be provided by secure applications.

o Users should be able to verify that the product and/or applications are secure.

2.2 Use Cases

”A use case specifies the behaviour of a system or a part of the system and is a
description of a set of actions, including variants, that a system performs to yield
an observable result of value to an actor” [10]. They should not be too general, but
neither contain design decisions nor implementation details.

The following subsections present use cases which have been organized into three
parts: A general description of the goal of the use case and (optional) extensions
and/or alternatives of the description and general security-related demands. The
analysis of the use cases, based on security requirements of Section 3.1, follows in
Section 3.2.

2.2.1 Use Case: Signing an email

Description: The user has written an email using an ordinary mailtool and selects
the “sign this message” button to inform the mailtool that s/he wants the email to
be signed. To send the email s/he invokes the “send”-button. If more than one
possible secret key exists, the system asks the user which key s/he wants to be
used.

Alternatives and extentions: The user or the mailtool can select the key to be
used when the “sign this message” box is selected, or a default key may be specified.
To calculate the signature, both a software implementation or a smartcard can be
used.

Demands: The user expects that nobody else is able to generate a valid signature
concerning her /his key pair.

2.2.2 Use Case: Generation of a new key pair

Description: The user wants to generate a new key pair. S/he invokes a key
generation program to generate a new key pair. The program asks for key attributes
(e.g. algorithm, key-id, key-length, etc.) and generates a new key pair.

Alternatives and extentions: The program could hide the key attributes and
provide a more abstract view (security-level etc.).

Demands: The user wants to be able to distribute the public key, but requires
that no one can observe the key generation process or copy the generated secret
key.

2.2.3 Use Case: Installing new services/applications

Description: The administrator of the system wants to install an application or
service. S/he invokes a subsystem management program to install it by selecting a
destination where the code of the new application can be found. The management
program has to translate general access control rules into local security policies.

Alternatives and extensions: The (security-) administrator wants to be able to
grant /restrict permission to install new applications/services.

Demands: The user expects that the reliability and security of the existing system
is not disturbed by the installation process and the new application.

2.2. USE CASES 11

2.2.4 Use Case: Updating a system service

Description: The administrator wants to update an existing system service (e.g.
the encryption service) by another (e.g. more trusted) one.

Alternatives and extensions:

e The new service implementation can have a higher version or patchlevel.

e The new service implementation can have a lower version or patchlevel.

Demands: The user expects that the reliability and confidence of the existing
system is not disturbed by the updating process.

2.2.5 Use Case: Opening a session

Description: The user wants to open a new session. She/he has to identify
herself/himself to make it possible for the system to grant correct permissions to
the user and to reload the state of the last session.

Demands: The user expects that he can continue at the point when he closed his
session (session management). S/he also expects that another person cannot abuse
the system if it is stolen or something like that.

2.2.6 Use Case: Closing a session

Description: The user wants to close the current session.

Alternatives and extensions: The user deactivates the system. After a primarily
defined time interval of user inactivity the system closes the session itself.

Demands: The user expects that the state of the current session is stored and
that no one else is able to continue her /his session.

2.2.7 Use Case: Activate system

Description: Somebody turns the system on to boot it.
Alternatives and extensions: The user starts the system the first time.

Demands: Users expect that the reached system state corresponds to the latest
consistent state before the system has been deactivated. They also expect that
another person cannot abuse the system, even if it is stolen or something like that.

2.2.8 Use Case: Deactivate system
Description: The administrator wants to halt the system and invokes a system
function to shut it down.

Demands: The user expects that s/he can re-activate the system without loss of
data.

2.2.9 Use Case: Rollback

Description: If an unexpected error occurs which cannot be caught by the secure
environment or if the secure environment itself has software bugs a defined set of
users (role) should be able to rollback the system into its latest coherent state.

Alternatives and extensions: If the system detects unrecoverable errors it can
invoke the rollback operation itself.

Demands: Users expect that the security of the system cannot be disturbed while
the rollback operation is executed.

12 CHAPTER 2. REQUIREMENTS ANALYSIS

2.2.10 Use Case: Enforcing local security policies

Description: The administrator installs, e.g. a file system service, which enforces
its own security policy relating to files. Table 2.1 lists file-operations which could
be provided by the service. The system-wide access control restricts permissions to

create
delete
read
append
overwrite
move

| Ot o o) =

Table 2.1: Example file-operations provided by a file system service.

access the service to the role FILESYSTEMUSERS, but of course every user who is
the owner of a file wants to be able to individually restrict access. Therefore the
file system service has to enforce access control on its own.

Alternatives: A user who creates a new subsystem wants to restrict access to a
subset of users of the system.

Demands: The security-admin expects that global security policies cannot be
bypassed. Users expect that their individual security policies are enforced.

2.2.11 Conclusion

Figure 2.1 contains an overview of discussed use cases and illustrates assignments

to roles.
—_— Change System-wide
Security Policy
Security Admin
Install New Software
VY,

Admin Deactivate System
Signing an Email Generation of a new Key Pair

4 Refine Security
§ Policy
User Opening a Session

Closing a Session
i\———.
Anonymous

Figure 2.1: Use cases and related roles.

Target of Evaluation

Update Software

2.3. SECURITY REQUIREMENTS 13

2.3 Security Requirements

This section contains an informal description of security requirements. This would
be the right place to insert Protection Profiles (introduced in Section 3.1) which
informally define security requirements by user view. As long as Protection Profiles
are not defined only some general security requirements can be specified.

2.3.1 Access Control

The secure environment shall be able to enforce security policies using access control.
In general access control has to fulfill two requirements which depend on the point
of view:

1. The system expects that access control controls actions of subjects (or pro-
grams running on behalf of subjects) in such a way that they cannot bypass
access control rules or attack system services.

2. Users expect that access control protects their objects against external attacks.

Figure 2.2 explains the expected behaviour of access control which controls and
protects programs/user objects. A program running under control of a user must

Secure Environnent

'/W
Program <
Obj ect
) —> Aborted Message
i|/' Perm tted Message

|:|Pr0tecti on
-Control

Figure 2.2: Access control protects and controls objects/programs.

not have more permissions than the user to guarantee the enforcement of global
security policies. Therefore access control of the secure environment has to enforce
that programs keep permissions of their owners. In contrast, users may want to
refine access rules on their own. Thus access control should provide a mechanism
to refine access to objects.

One way to define access control rules of global security policies is to use role-
based access control model as assumed by the Common Criteria. A sample role
hierarchy is suggested by the next subsection.

2.3.2 Roles

The goal of this work is to develop a security-policy independent secure environment.
But to evaluate IT products using the Common Criteria requires the definition
of security-policies and roles. To make this possible this section suggests a very
simple role hierarchy which can easily be extended by later improvements. A short
explanation of suggested roles follows, outlined by Figure 2.3:

ANONYMOUS An unknown subject which has only the permission to change his
role (open a new session).

14 CHAPTER 2. REQUIREMENTS ANALYSIS

Role | ASSUrance| permissions
Level
high Security-related Changes
System-wide Changes
Use Client OS
\/
low Change Role

Figure 2.3: Suggestion of a simple role hierarchy.

USER Defines permissions and responsibilities of all subjects which have permission
to use the Client OS. The USER role also defines a set of permissions to use
services of the secure environment without further authentication. To be able
to restrict access to the Client OS every user has to be authenticated by the
secure environment. Therefore it is not necessary to distinguish between users
which have the permission to access the secure environment and those who
don’t. More than one subject has the permission to use the role USER, because
I decided to develop a multi-user system. This may be changed if the secure
environment is ported to a PDA system (Section 4.4.7 discusses a solution to
design the secure environment in such a way that it is possible to use it for
one- and multi-user environments).

ADMIN Defines activities to invoke frequently used system management functions,
e.g. system-wide installation of new software or user-management. The ADMIN
role is not allowed to do actions which can disturb the security of the system.

SECURITY-ADMIN This role has permissions to adjust all security relevant man-
agement functions which can disturb the security of the secure environment.
Examples are modifications/updates of core components and changes of the
global security policy.

The separation of administrator rights into ADMIN and SECURITY-ADMIN makes it
possible to use the system in a potentially untrusted environment (e.g. if a company
distributes mobile devices to its employees which are able to install new software
using the ADMIN role, but cannot bypass global security adjustments). Further roles
can be defined to restrict access to subsets of users.

Chapter 3

System Definition

This chapter contains a precise analysis of functional and security-related require-
ments of use cases and extracted subservices/properties. Goals of this chapter are
to collect and order the various requirements and, if possible, divide them into sub-
systems, classes, attributes, operations, links and aggregations. User-interfaces and
implementation-related problems have to be ignored completely.

Results of this chapter are summarized by an OOA model presented in Section
3.5, which also compares this model with the preliminary high-level PERSEUS
architecture. Together with the list of required functions (a complete version can
be found in Appendix B) it should be possible to design and implement the product.

In order to avoid defining security-related terms and requirements on my own,
the Common Criteria (Section 3.1) are presented first, which treats basic security
requirements and defines concepts which can then be used by the analysis of the
use cases and following sections. Hasty readers may skip this section and look up
if a concept or word is unclear.

3.1 The Common Criteria

This section discusses basic requirements necessary to develop a secure environment
as described in Section 1.1. Another task of this section is to provide a set of
definitions to prevent misunderstandings. The security functional requirements of
the Common Criteria for Information Technology Security Evaluation [37], short
CC, is used as a guide for development of the secure environment. In addition, I
hope that later evaluation of secure components is easier if both, defined terms and
concepts, are used continuously in the analysis, design and implementation phase.

3.1.1 Introduction

The Common Criteria is presented as a set of three distinct but related parts; the
first part is the introduction to the CC and contains the general model. It also
presents constructs for writing the high-level specifications Protection Profile (PP)
and Security Target (ST). The second part contains a list of functional components
to describe functional requirements of Targets of Evaluation (TOE). Part three es-
tablishes a set of assurance components to be able to express assurance requirements
for TOEs.

Part 2 of the Common Criteria divides security functional requirements of TOFs
into 11 different classes of families containing different components. They are used
to get a list of requirements that should be considered when designing a secure IT
product. I considered only those requirements which seem to be necessary to develop

15

16 CHAPTER 3. SYSTEM DEFINITION

a secure PDA as informally described in Section 1.1. This examination cannot
be complete, because not all design criteria are currently available. Evaluation
of an IT product, based on the CC, requires a complete specification of security
policies and functions, and both are currently not available. If they are available,
developers should re-evaluate this section, with respect to all three parts of the
Common Criteria.

The next subsections contain short descriptions and examinations of security
requirements of the Common Criteria part 2. If the CC desires definition of oper-
ations, security policies or something like that, I changed the requirements in that
way that the secure environment only has to be able to enforce these requirements.
Already known restrictions and properties have been included and the appropriate
parts of the security requirements (Appendix A) are marked in italics.

3.1.2 C(Class FAU: Security audit

Security auditing involves recognizing, recording, storing and analysing information
related to security relevant activities. The resulting audit records can be exam-
ined to determine which which security relevant activities took place and who is
responsible for them. This class is not considered by this work.

3.1.83 C(lass FCO: Communication

This class provides two families specifically concerned with assuring the identity
of a party participating in a data exchange. These families ensure that an origin
cannot deny having sent the message, nor can the recipient deny having received
it. This class has also been ignored, because higher protocols can provide these
requirements if necessary.

3.1.4 C(lass FCS: Cryptographic support

To satisfy high-level security objectives the TOFE may employ cryptographic func-
tionality. Some examples of high-level security objectives required to build a secure
environment are: Identification and authentication, trusted channels and data sep-
aration. Required functions have to be defined by use cases of Section 2.2. All
specified functions are listed in Appendix B.3.2.

Family FCS_CKM: Cryptographic key management

Description: FCS_CKM defines requirements for cryptographic key generation
(FCS_ CKM.1), cryptographic key distribution (FCS_ CKM.2), crypto-
graphic key access (e.g. backup, escrow, archive, recovery) (FCS_ CKM.3)
and cryptographic key destruction FCS_CKM.4).

Analysis: This family is required by FCS__COP. Algorithms and standards to be
used have to be decided later.

Management: Changes to cryptographic key attributes as explained in Section
3.2.1.

Family FCS_COP: Cryptographic operation

Description: The FCS_COP family requires functions to perform cryptographic
operations with a specified cryptographic algorithm and cryptographic
key size that meets a standard.

3.1. THE COMMON CRITERIA 17

Analysis: Cryptographic operations are required by Use Case “Signing a docu-
ment” and to provide authentication modules. In order to perform se-
cure external communication channels symmetric encryption and de-
cryption operations are necessary and to distribute symmetric keys
asymmetric encryption is required. Section 3.2 contains an extended
discussion of required cryptographic operations.

3.1.5 Class FDP: User data protection

This class contains families specifying requirements for TOE Security Functions
and TOE Security Function Policies related to protecting user data. User data to
be protected is the private key used to sign documents, thus this class is required.
All required security functions are listed in Appendix B.3.3. This class is composed
of the following families:

Family FDP_ACC: Access control policy

Description: This family identifies the access control SFP(s) (by name) and defines
the scope of control of the policies that form the identified access control
portion of the T.SP.

Analysis: 1 don’t want to make special assumptions on the access control policies
at this point of development. To be able to support all upcoming access
control policies the reference monitor has to be designed to be able to
cover all operations (FDP_ACC.2) and it should be possible to have
more than one access control policy in parallel.

To evaluate the design of the reference monitor the prototype should
implement a sample policy to show that it works. Some considerations
on access and information flow control are separated into Section 3.4.2.

Family FDP _ACF: Access control functions

Description: This family describes the rules for the specific functions that can
implement access control policy named in FDP_ACC which specifies
the scope of the policy.

Analysis: Because no SFP is defined by family FDP_ ACC, currently no rules can
be described.

Family FDP_DAU: Data authentication

Description: This family provides methods to provide guarantees of the validity of
a specific unit of data that can subsequently be used to verify that the
information content has not been forged or fraudulently modified. In
contrast to class FAU, this family is intended to be applied to “static”
data rather than data that is being transferred.

Analysis: Although not mentioned explicitly I think that this family only deals
with user data. If necessary this requirement can be satisfied by higher
protocols like hash or signature functions.

Management: The assignment or modification of the objects for which data au-
thentication may apply could be configurable to the system.

18 CHAPTER 3. SYSTEM DEFINITION

Family FDP_ETC: Export to outside TSF control

Description: This family provides functions for exporting user data from the TOE
such that its security attributes and protection either can be explicitly
preserved or can be ignored once it has been exported.

Analysis: As outlined in Use Case “Generation of a new key pair” (Section 2.2.2)
public keys have to be exported outside the secure environment. It
contains no security attributes, thus FDP_ETC.1 should suffice.

Family FDP_IFC: Information flow control policy

Description: Provides subset information flow control FDP IFC.1 or complete
information flow control FDP IFC.2.

Analysis: Information flow, especially covered channels, is a very complex and
security relevant problem and Section 3.4.3 contains a short discussion
about this topic. The system should be designed to be able to satisfy
every upcoming information flow control policy.

Family FDP_ITC: Import from outside TSF control

Description: This family defines mechanisms for introduction of user data into the
TOE such that it has appropriate security attributes and is appropri-
ately protected.

Analysis: Required to be able to install new applications. Associated security
attributes could be derived from third party certificates. I decided to
define installed applications as user data to make it possible that users
can install applications locally.

Management: The modification of the additional control rules used for input by
the security-admin role.

Family FDP_ITT: Internal TOE transfer

Description: This family provides requirements that address protection of user
data when it is transferred between parts of the TOF across an internal
channel.

Analysis: In contrast to the informal description of this family the requirements
use the term “physically separated parts of the TSF”. I define the ad-
dress spaces and separated hardware components of the PDA to be
non-separated.

Upcoming requirements of internal transfers can be satisfied by class
FTP “Trusted Paths/Channels” (e.g. between smartcard and PDA) and
by family FPT PHP “TSF physical protection”.

Family FDP_RIP: Residual information protection

Description: This family addresses the need to ensure that deleted data is no longer
accessible, and that newly created objects not contain information that
should not be accessible.

Analysis: FDP_RIP.1 is required to protect, e.g., deleted secret keys. It is not
necessary to protect, e.g., installed applications, thus FDP _RIP.2 is not
a must. It is important not only to consider object creation/deletion.
This kind of problem occurs if, e.g., a virtual memory page is reallocated.

3.1. THE COMMON CRITERIA 19

Management: The choice of when to perform residual information protection (i.e.
upon allocation or deallocation could be made configurable within the
TOE.

Family FDP_ROL: Rollback

Description: The rollback operation involves undoing the last operation or a series
of operations, bounded by some limit, such as a period of time, and
return to a previous known state.

Analysis: In general a rollback mechanism is required to provide consistency and
resistance against software bugs and hardware failures (see FDP_SDI).
To prevent data inconsistence the T'SF shall rollback into a consistent
state. This topic is discussed in Section 3.2.7.

Management:

1. The boundary limit to which rollback may be performed could be
a configurable item within the TOE.

2. Permission to perform a rollback operation could be restricted to
a well-defined role.

Family FPD _SDI: Stored data integrity

Description: This family provides requirements that address protection of user
data while it is stored within the TSC.

Analysis: Tt is important to monitor stored data integrity to be able to detect
internal errors, e.g. hardware glitches or errors. An action the system
has to invoke if it detects an error could be the rollback mechanism
(FDP_ROL).
= FDP SDI.2 is required.

Family FDP_UCT: Inter-TSF user data confidentiality transfer protection

Description: This family defines the requirements for ensuring the confidentiality
of user data when it is transfered using an external channel between
distinct TOFE’s or users on distinct TOE'’s.

Analysis: Not required by the first prototype, but may be necessary if secure
applications share data with external databases or use external services
(e.g. a stock broking application).

Family FDP_UIT: Inter-TSF user data integrity transfer protection

Description: 'This family defines the requirements for providing the integrity for
user data in transit between the TSF and another trusted IT product
and recovering from detectable errors.

Analysis: Similar to FDP_UCT; not required by the first prototype, but may be
necessary if secure applications share data with external databases or
use external services (e.g. a stock broking application).

3.1.6 Class FIA: Identification and authentication

Families in this class address the requirements for functions to establish and verify
a claimed user identity. Required security functions are summarized in Appendix
B.3.4.

20 CHAPTER 3. SYSTEM DEFINITION

Family FIA_AFL: Authentication failures

Description: This family defines values for some number of unsuccessful authen-
tication attempts and T'SF actions in cases of authentication attempt
failures.

Analysis: The first version of the secure environment does not have to restrict the
number of unsuccessful authentication attempts, thus FIA AFL is not
required.

Management:

1. Management of the threshold for unsuccessful authentication at-
tempts.

2. Management of actions to be taken in the event of an authentica-
tion failure.

Family FIA_UAD: User attribute definition

Description: All authorized users may have a set of security attributes, other than
the user’s identity, that is used to enforce the T'SP. This family defines
requirements for associating user security attributes with users as needed
to support TSP.

Analysis: The type of security attributes (capabilities, clearance, rights) rarely
depends on the model of access control. Currently only role-based access
control is used, therefore only roles can be assigned.

Management: If so indicated in the assignment, the authorized administrator might
be able to define additional security attributes to users.

Family FIA_SOS: Specification of secrets

Description: This family defines requirements for mechanisms that enforce defined
quality metrics on provided secrets and generate secrets to satisfy the
defined metric.

Analysis: This family is currently not considered by this diploma thesis.

Family FIA_UAU: User authentication

Description: This family defines the types of user authentication mechanisms sup-
ported by the TSF.

Analysis: As demanded by Section 2.3.2, only authentication should be possible
before the claimed identity of the user is authenticated (FIA_UAU.2 is
required). A later version can additionally provide a help machanism
belonging to the authentication procedure. Non-sharable authentica-
tion mechanisms are desirable, but currently not planned. SR 151 is
only an example of FIA UAU.5.2. Re-authentication (FIA_ UAU.6) is
required in two cases: First, if the user requests the TSF to perform
actions of a higher security level. Also the T'SF' shall force the user to
re-authenticate after a time interval of inactivity (login timeouts). Pro-
tection of authentication feedback (e.g. the number of characters typed)
(FIA_UAU.7) is required but should be configurable to help disabled
persons.

Management:

3.1. THE COMMON CRITERIA 21

1. Management of the authentication data by the administrator.

2. Management of the authentication data by the user associated with this data.
3. Management of authentication mechanisms.

4. Management of the rules for authentication

5. If an authorized administrator could request re-authentication, the manage-
ment includes a re-authentication request.

6. Management of authentication feedback.

Family FIA_UID: User identification

Description: This family defines the conditions under which users shall be required
to identify themselves before performing any other actions that are to
be mediated by the TSF and which require user authentication.

Analysis: As defined in family FIA UAU users have to identify themself before
performing any other action.

Management: Management of the user identities.

Family FIA_USB: User-subject binding

Description: An authenticated user, in order to use the TOE, typically activates
a subject. The user’s security attributes are associated (totally or par-
tially) with this subject. This family defines requirements to create and
maintain the association of the user’s security attributes to subjects
acting on the user’s behalf.

Analysis: This family deals with the problem of transitivity of permissions. A
server which acts on behalf of a user has to consider appropriate per-
missions. Example: An encryption service can be invoked by all users of
the system, but only the owner of a specific secret key is allowed to use
it. Therefore the encryption service has to inherit the user’s permission
to use that key.

The first prototype can bypass this problem by enforcing re-authentication
whenever a user uses a secure service.

Management: An authorized administrator can define default subject security at-
tributes.

3.1.7 Class FMT: Security management

This class is intended to specify the management of several aspects of the TSF':
security attributes, TSF data and functions. The different management roles and
their interaction, such as separation of capability, can be specified. All requirements
have been listed in Appendix B.3.5.

Family FMT_MOF: Management of functions

Description: 'This family allows authorized users control over the management of
functions in the TSF.

22 CHAPTER 3. SYSTEM DEFINITION

Analysis: The ability to change the behaviour of security related functions should
be restricted to one or more administrator roles to prevent users from
deleting system data. Obviously FMT MOF.1 is required. Because it is
currently not possible to list all system functions only general statements
have been made.

Management: Managing the group of roles that can interact with the functions in
the TSF.

Family FMT _MSA: Management of security attributes

Description: 'This family allows authorized users control over the management of
security attributes.

Analysis: FMT_MSA.1 is required to assign security attributes to individual
users/subjects. FMT MSA.2 is required by all families of class FCS.
Because security attributes are currently not available, they have been
separated into critical (e.g. default values) and non-critical (e.g. priori-
ties) attributes.

Management: Managing the group of roles that can interact with the security
attributes.

Family FMT_MTD: Management of T'SF data

Description: This family allows authorized users (roles) control over the manage-
ment of the T'SF data.

Analysis: No TSF data has been defined so far, therefore I divided them into
security-related and system-wide data. Also actions to be taken are
currently not defined because they are security-policy dependend.

Management:

1. Managing the group of roles that can interact with the T'SF' data.

2. Managing the group of roles that can interact with the limits on
the T'SF data.

Family FMT _REV: Revocation

Description: This family addresses revocation of security attributes for a variety
of entities within a TOE.

Analysis: Capabilities, assigned to users, have to be removed sometimes. There-
fore the access control mechanism should provide a function to revoke

security attributes. Revocation rules themself are security-policy depen-
dend.

Management:

1. Managing the group of roles that can invoke revocation of security
attributes.

2. Managing the list of users, subjects, objects and other resources
for which revocation is possible.

3. Managing the revocation rules.

3.1. THE COMMON CRITERIA 23

Family FMT _SAE: Security attribute expiration

Description: This family addresses the capability to enforce time limits for the
validity of security attributes.

Analysis: Not required by the first prototype.

Family FMT _SMR: Security management of roles

Description: This family is intended to control the assignment of different roles to
users.

Analysis: FMT_SMR.1 is required because roles are used by a lot of components.
Restrictions on assignment of security roles are currently not required.
FMT_SMR.3 is required to prevent assignment of any roles to the Client
0S.

Management: Managing the group of users that are part of a role.

3.1.8 C(lass FPR: Privacy

This class contains privacy requirements. These requirements provide a user pro-
tection against discovery and misuse of identity by other users.

Family FPR__ANO: Anonymity

Description: This family ensures that a user may use a resource or service without
disclosing the user’s identity. Anonymity is not intended to protect the
subject identity.

Analysis: 1 decided to ignore this requirements for the first prototype. But it may
be required to prevent covered information flows (see Section 3.4.3).
Family FPR_PSE: Pseudonymity

Description: This family ensures that a user may use a resource or service whiteout
disclosing its user identity, but can still be accountable for that use.

Analysis: Similar to the family discussed above it may be necessary to prevent
unwished information flows, but it is currently not considered.
Family FPR_ UNL: Unlinkability

Description: This family ensures that a user may make multiple uses of resources
or services without others being able to link these uses together.

Analysis: May be required to prevent unwished information flows, but ignored by
this work.

Family FPR_UNO: Unobservability

Description: This family ensures that a user may use a resource or service without
others, especially third parties, being able to observe that the resource
or service is being used.

Analysis: May be required to prevent unwished information flows, but ignored by
this work.

24 CHAPTER 3. SYSTEM DEFINITION

3.1.9 C(lass FPT: Protection of the TSF

This class contains families of functional requirements that relate to the integrity
and management of the mechanisms of the T'SF' and to the integrity of the T'SF data
(independent of the specific contents of the TSF data). The list of requirements
necessary to build the secure environment is listed in Appendix B.3.6.

Family FPT AMT: Abstract machine test

Description: This family defines requirements for the T'SF' to perform testing to
demonstrate the security assumptions made about the underlying ab-
stract machine upon which the T'SF relies.

Analysis: “Underlying abstract machine” in this case means the hardware and the
microkernel. This family is required but its contents are out of the scope
of this document. This work assumes that the hardware and the kernel
work correctly.

Family FPT _FLS: Fail secure

Description: The requirements of this family ensure that the TOE will not violate
its TSP in the event of identified categories of failures in the TSF.

Analysis: FPT _FLS.1 is required to protect the TSP and the integrity of the TSP
data. It is also required by FDP_SDI and FRU FLT (fault tolerance).
Example classes of failures are hardware failures (CPU, memory, disk)
or software failures. Software can be separated into core components
and other components. I decided only to consider software failures here.

Family FPT _ITA: Availability of exported T'SF data

Description: This family defines the rules for the prevention of loss of availability
of TSF data moving between the TSF and a remote trusted IT product.

Analysis: Not required because no TSF data has to be exported.

Family FPT ITC: Confidentiality of exported TSF data

Description: This family defines the rules for the protection from unauthorized
disclosure of T'SF data during transmission between the T'SF and a
remote IT product.

Analysis: Not required because no TSF data has to be exported.

Family FPT _ITI: Integrity of exported T'SF data

Description: This family defines the rules for the protection, from unauthorized
modification, of TSF data during transmission between the T'SF' and a
remote trusted IT product.

Analysis: Not required because no TSF data has to be exported.

3.1. THE COMMON CRITERIA 25

Family FPT_ITT: Internal TOE TSF data transfer

Description: This family provides requirements that address protection of TSF
data when it is transferred between separate parts of a TOFE across an
internal channel.

Analysis: In class FDP I assumed the TOFE not to be separated. Thus this family
is not required.

Management: -

Family FPT _PHP: T'SF physical protection

Description: TSF physical protection components refer to restrictions on unau-
thorized physical access to the TSF, and to the deterrence of, and re-
sistance to, unauthorized physical modification, or substitution of the
TSF. Protection against non-physical attacks is examined, e.g., by the
next family.

Analysis: Protecting the TSF from physical tampering and interference is required
but out of the scope of this document. This family is required, e.g. by
Section 3.3.4.

Management: -

Family FPT RCV: Trusted recovery

Description: The requirements of this family ensure that the T'SF can determine
that the TOFE is started up without protection compromise and can
recover without protection compromise after discontinuity of operations.

Analysis: Tt is very important to guarantee a secure initial boot mechanism and
a secure recovery boot mechanism after an error. At least a manual
recovery mechanism (a defined role can recover the system into a secure
state) is required which provides recovery to guarantee a secure state.
Further discussions on this topic can be found in Section 3.3.4.

Management: Management of roles which have the permission to restore the sys-
tem state.

Family FPT_RPL: Replay detection

Description: This family addresses detection of replay for various types of entities
and subsequent actions to correct.

Analysis: Required to be able to provide atomic operations which may be required
to ensure that a message is sent only once. This criteria has to be
considered by all components which provide persistence.

Management:
1. Management of the list of identified entities for which the replay
shall be detected.

2. Management of the list of actions that need to be taken in case of
a replay.

26 CHAPTER 3. SYSTEM DEFINITION

Family FPT_RVM: Reference mediation

Description: The requirements of this family address the “always invoked” aspect
of a traditional reference monitor. The goal of this family is to ensure,
with respect to a given SFP, that all actions requiring policy enforcement
are validated by the TSF against the SFP.

Analysis: Required to provide a reference monitor as demanded by the Common
Criteria, Part 2.
Family FPT SEP: Domain separation

Description: The components of this family ensure that at least one security do-
main is available for the TSF’s own execution and that the TSF is
protected from external interferences and tampering by untrusted sub-
jects.

Analysis: FPT SEP.3 is required to provide a reference monitor as defined in the
Common Criteria, Part 2.
Family FPT_SSP: State synchrony protocol

Description: This family ensures that two distributed parts of the TOE have syn-
chronized their states after a security-relevant action.

Analysis: Not required because the secure environment is not distributed.

Family FPT_STM: Time stamps

Description: This family addresses requirements for a reliable time stamp function
within the TOE.

Analysis: Required for the purpose of security attribute expiration (expiration of
a secret key).

Management: Management of the time.

Family FPT _TDC: Inter-TSF TSF data consistency

Description: This family defines the requirements for sharing and consistent in-
terpretation of security attributes between the TSF of the TOFE and
another trusted IT-product.

Analysis: Not required because no TSF internal data has to be shared with an-
other trusted IT product.

Family FPT _TRC: Internal TOE TSF data replication consistency

Description: The requirements of this family are needed to ensure the consistency
of TSF data when such data is replicated internal to the TOE.

Analysis: This kind of problem occurs if more than one subsystem accesses TSF
data and/or is able to modify it, or if TSF data is shared between
different subsystems and has to be synchronized.

3.1. THE COMMON CRITERIA 27

Family FPT_TST: Self test

Description: This family defines the requirements for the self-testing of the T'SF
with respect to some expected correct operation.

Analysis: It may be important to test the processor, memory and random bit
generators, but self-testing of these components is out of the scope of
this document.

3.1.10 Class FRU: Resource utilization

This class provides three families that support the availability of required resources
such as processing capabilities and/or storage capacity. Hardware resources to be
mediated are interrupts, tasks, BIOS, I/O ports and unique resources like memory,
display, keyboard, harddisk(s), printer, etc. All required functions are listed in
Appendix B.3.7.

Family FRU FLT: Fault tolerance

Description: The requirements of this family ensure that the TOFE will maintain
correct operation even in the event of failures.

Analysis: At least FRU _FLT.1 is required to provide resistance against software
bugs of non-core components. If hardware bugs occur, software cannot
ensure correct operation. To provide correctness of additional devices,
e.g. harddisks, is out of the scope of this document.

Family FRU_PRS: Priority of services

Description: The requirements of this family allow the TSF to control the use of
resources within the T'SC' by users and subjects such that high priority
activities within the TSC will always be accomplished without undue
interference or delay caused by low priority activities.

Analysis: It is very important to guarantee the execution of core components
of the system. Therefore at least all resources required by these core
components have to be mediated by trusted components. This requires
FRU_ PRS.1.

Management: Assignment of priorities to each subject in the TSF.

Family FRU RSA: Resource allocation

Description: The requirements of this family allow the T'SF to control the use
of resources by users and subjects such that denial of services will not
occur because of unauthorized monopolization of resources.

Analysis: In contrast to family FRU PRS this family required the mediation of
all non-sharable resources by fully trusted core components. At least
the definition of maximum quota (FRU RSA.1) is required to prevent
unauthorized monopolization of resources.

Management: Specifying maximum limits for a resource for groups and/or indi-
vidual users and/or subjects by the administrator.

28 CHAPTER 3. SYSTEM DEFINITION

3.1.11 Class FTA: TOE access

This class specifies functional requirements for controlling the establishment of a
user’s session. Required functions have been listed in the Appendix B.3.8.

Family FTA LSA: Limitation on scope of selectable attributes

Description: This family defines requirements to limit the scope of session security
attributes that a user may select for a session.

Analysis: Limitations of session security attributes are currently not necessary.

Family FTA_MCS: Limitation on multiple concurrent sessions

Description: This family defines requirements to place limits on the number of
concurrent sessions that belong to the same user.

Analysis: Currently not considered.

Family FTA_SSL: Session locking

Description: This family defines requirements for the T'SF' to provide the capabil-
ity for TSF-initiated and user-initiated locking and unlocking of inter-
active sessions.

Analysis: Session locking after a specified period of inactivity should be supported
by the secure environment, thus FTA SSL.1 is required. Also the user
should be able to lock a session. This requires FTA SSL.2. A mech-
anism that should occur prior unlocking a locked session is defined by
FIA UAU.6 “re-authentication”.

Management:

1. Specification of the time of user inactivity after which the lock-out
occurs for an individual user.

2. Specification of the default time after which the lock out occurs.

3. Management of the events that should occur prior to unlocking the
session.

Family FTA_TAB: TOE access banners

Description: This family defines requirements to display a configurable advisory
warning message to users regarding the appropriate use of the TOE.

Analysis: Not required at the moment.

Management: Maintenance of the banner by the authorized administrator.

Family FTA_TAH: TOE access history

Description: This family defines requirements for the TSF to display to a user,
upon successful session establishment, a history of successful and unsuc-
cessful attempts to access the user’s account.

Analysis: Currently ignored.

3.2. ANALYSIS OF USE CASES 29

Family FTA_TSE: TOE session establishment

Description: This family defines requirements to deny a user permission to estab-
lish a session with the TOE.

Analysis: Currently ignored.

3.1.12 Class FTP: Trusted path/channels

Families in this class provide requirements for a trusted communication path be-
tween users and the T'SF, and for a trusted communication channel between the T'SF
and other trusted IT products. Required functions are summarized in Appendix
B.3.9.

Family FTP_ITC: Inter-TSF trusted channel

Description: This family defines requirements for the creation of a trusted channel
between the TSF and other trusted IT products for the performance of
security critical operations.

Analysis: Required by later versions to provide inter-TSF user data integrity
(FDP_UIT) and confidentiality (FDP_UCT). Currently required, e.g.
by Use Case “Download of new content”, to initiate a (secure) commu-
nication to a trusted IT product of the content provider.

Management: Configuring the actions that require trusted channels, if supported.

Family FTP_TRP: Trusted path

Description: 'This family defines the requirements to establish and maintain trusted
communication to or from user and the TSF.

Analysis: Required by FDP_UCT and FDP__UIT. A trusted path is required for
any security-relevant interaction. The trusted path has to guarantee,
e.g., that untrusted applications cannot pretend to be trusted ones. This
topic is discussed by Section 3.4.8.

3.2 Analysis of Use Cases

The following subsections contain an analysis of the use cases introduced in Chapter
2. At the end of this section a complete list of required system functions is specified,
listed in Appendix B.4, which may overlap with some security requirements defined
by the last section. Extracted functions have not been numbered continuously to
be able to insert new ones.

3.2.1 Signing an email

In order to sign documents created by Client OS applications (e.g. a mailtool) it
is necessary that the secure environment provides a bidirectional communication
path to the Client OS and that applications can use it. Figure 3.1 outlines in a
simplified manner the data-flow of the sign function requested by Use Case “Signing
an email” if a Client OS application has sent a document to the secure environment.
The input parameters of the main function are a plain ASCII message and a unique
secret-key identifier.

To sign documents and generate sendable messages, four functions and an un-
derlying key management interface are required. Analysis of signature creation

30 CHAPTER 3. SYSTEM DEFINITION

plain signed
ASClI Sign ASCII ASCII
Document message
Binary
to
binary hgy ASCII
crypto
format
plain
binary Key binary
message Management signature
hash secret
function key
Hash Sign
digest

Figure 3.1: Data-flow while signing an ASCII text.

processes of crypto-formats OpenPGP [2] and S/MIME v.3 [1] in [30] have shown
that nearly all functions depend on the underlying crypto-format which itself is
defined by the secret key. This should be considered whenever interfaces are to be
defined.

Another restriction concerning interfaces of signature services is given by smart-
cards. To make the use of cryptographic smartcard functions transparent to the
user, the defined interface must not be higher granulated than the interface given
by smartcards.

The next restriction is given by the answer of the question which function/data
has to be protected by the secure environment and which not. Of course secret-key
data has to be protected, and thereby operations which operate on this data, at
least the secret key operation of the digest. But because the secure environment
should be able to show documents to users for verification, also hash and convert
functions have to be provided by the secure environment.t

In order to check that the Client OS has sent the correct document to the secure
environment, it should be able to show them for verification. Therefore Section 3.4.8
discusses requirements for a general document viewer.

The result of this subsection is the establishment that the secure environment
has to provide a bidirectional communication path between secure environment and
Client OS applications [F 3] which can be used without modification of Client OS
applications, a trusted sign function [F 5] which accepts a plaintext and a key-id
as arguments and contains a crypto format independent key management service
[F 10]. Internally the secure environment has to provide a hash function [F 60]
which converts binary messages into digests, a signature function [F 65] which signs
digests using a public key algorithm and two functions, [F 70] and [F 71], to convert
an ASCII text into binary data and vice versa. All functions have to meet at least
one public crypto standard.

3.2.2 Generation of a new key pair

Of course key-pairs have to be generated by the secure environment to protect it
against malicious programs and a buggy Client OS. Nevertheless a lot of require-
ments have to be considered:

Security Level. In my opinion the Client OS must not translate abstract se-
curity levels into key generation parameters, because of the following
reason: Abstract security levels are used to hide algorithm-specific de-
tails. If users decide to generate a “very secure” key, we cannot assume

I This opens the question, how binary data could be verified?

3.2. ANALYSIS OF USE CASES 31

that they understand verification messages of the secure environment
like “Shall I create an X key with key-length Y?”. Instead, the secure
environment has to ask “Shall I create a [very secure] key?”. Of course,
other parameters may be shown or even be changeable (optional). Thus
I decided that the secure environment has to provide abstract security
levels.

Key Id. Although Client OS and secure environment can use any internal data
type to identify keys, the secure environment has to provide a unique
key id locally in a user-readable format. This is necessary to prevent a
verification message like “Are you sure you want to sign this document
using key 0raff6202c?”.

Random Generator. Secure creation of cryptographic keys requires cryptograph-
ically strong random generators. A framework should provide an inter-
face which returns crypttographic strong random bytes on demand.

Public Key. The user also needs access to the public key. Often (always?) the
public key data can be extracted from secret key data, but in all cases
some public key data is required.

SmartCards. In order to make it possible to use smartcards, their key-generation
interfaces should also be considered.

New requirements to the secure environment’s key management service: A key-
generation function [F 15] with no arguments® which provides abstract security
levels and key identifiers in a user-readable format, a service [F 20] which creates
cryptographically strong random generators and a function [F 25] which creates
random values from user inputs. Additionally a function [F 30] is required which
returns public keys on demand.

3.2.3 Opening/Closing a session

Users who open new sessions have to be authenticated to ensure that security poli-
cies can be enforced. If sessions are closed it would be nice to be able to store their
state to be able to load it if a new session is opened by the same subject (session
management).

The secure environment has to provide a function to open a session which uses
authentication mechanisms [F 85] and a function to close the current session [F 90].
The locking mechanism, demanded by [SR 340] - [SR 346], is equal to closing a
session if a session management function is provided. Therefore an explicit locking
mechanism is obsolete (but of course it can be implemented explicitly). To fulfill
[SR 155] the system has to close the session after a specified time of user inactivity.
This makes it necessary to have an internal timer [F 95]. To be user-friendly the
system should warn users before the session is closed.

3.2.4 Activate/Deactivate System

If the system is activated it should reload into its latest consistent state, but then
invoke an authentication mechanism to prevent misuse.

Therefore deactivating the system is similar to invoking function [F 80]. If
the system is activated (turned on) the default (and protected!) behaviour should
be to invoke function [F 81]. The secure environment has to enforce that the

2 At this point of development T ignore cryptographic algorithms like fail-stop or group signatures
which need extra data to create a new key pair.

32 CHAPTER 3. SYSTEM DEFINITION

activated system invokes an authentication mechanism (explicitly or by closing the
current session before the system is deactivated). It should be possible to grant the
permission to deactivate the system to a specific role.

3.2.5 Installation of new Software

To install new software the program data of the new application/service has to be
copied into the secure environment by an internal function [F 35] which makes it
possible to access external (e.g. ftp server) data. The permissions of the software
to be installed depends on the rights of the subject which invokes the installation
process and the trust in the correctness of the software to be installed.

If users shall trust the secure environment they have to make sure that used
components work as expected. They may assign different trust levels to different
services and define rules how trust levels have to be assigned to components. The
trust level of components may depend on different things, e.g.:

1. Whether the source code is available or not.

2. The trust in the provider of the software.

3. Third party certificates which guarantee correctness of the software.
4. The trust in the third party which provides certificates.

5. The number of certificates available for the software.

Finally only users can assign levels of trust to contents, but the secure environment
can help to derive suggestions [F 55]. Starting a subsystem heavily depends on the
underlying system and development tools (e.g. linker) and has to be provided by
a separate modular function [F 52]. External function are [F 40] to start a new
subsystem and a function [F 45] to remove an existing subsystem. [F 40] should
accept the destination address where the subsystem’s code and further information
to derive the trust level can be found, and [F 45] should accept a unique identifier
of the subsystem.

3.2.6 Updating a Service

Extends Use Case “Installation of new Software”. If a service is updated two things
have to be considered:

1. The internal ID (address) of the service may change.

2. The updated service may provide a different interface (e.g. higher or lower
version).

Because of 1.) both references to subsystems and the access control mechanism (see
Section 3.4.2) must not depend on internal subsystem-IDs like task or thread IDs
[SR 400]. The second point makes is necessary to integrate a versioning mechanism
[F 78] to the interface description of a subsystem (see Section 3.4.1). Additionally a
naming service [F 75] is required which maps external references into internal data
types and vice versa.

3.3. ANALYSIS OF SECURITY REQUIREMENTS 33

3.2.7 Rolling back the System State

To be able to define granularity of rollback mechanisms, it has to be decided if
it is possible to rollback only one subsystem or if the complete system state has
to be rolled back if an error occurs. Also the design of the recovery mechanism
heavily depends on the storage mechanism of persistent data discussed in Section
3.3.2. Section 4.5.2.1 introduces a model based on [26, page 5] which provides global
persistence and can also be used as recovery mechanism. A new external function
[F 95] is required to rollback the system state.

3.2.8 Enforcing Local Security Policies

Passive data of different security levels cannot interfere with each other, therefore
it is not necessary to store them into separated protected domains, but of course
security levels of these data must not be higher than the trust-level of the im-
plementation of the management service (e.g. database). Services like databases
or filesystems which manage large amounts of passive data should be able to en-
force their own access control policy, as illustrated by Use Case 2.2.10, because
system-wide security policies cannot understand semantics of operations provided
by services. In contrast, the other (alternative) description of this use case is only a
refinement of the system-wide access control rules and can be enforced by existing
mechanisms, but this leads to frequent changes of these rules. Additionally this
approach is very inefficient because the whole set of access control rules is used
every time the access control checks permissions of every subsystem.

Because local subjects/objects should not be able to bypass system-wide access
control policies only refinements can be allowed. This leads to a new security
requirement [SR 299]: Subsystems should be able to refine global access control
policies (by providing additional rules or enforcing their own security policy).

To be able to enforce local security policies or refine global ones, subsystems
need some additional information to recognize and distinguish subjects. Thus a
new internal system function [F 110] is required which makes security attributes
assigned to subjects acting on behalf of users available to subsystems being accessed
by these subjects.

3.3 Analysis of Security Requirements

This section contains additional analysis of security requirements of the Common
Crriteria presented in Section 3.1.

3.3.1 Client OS

The secure environment cannot grant capabilities to individual tasks of a Client OS
without restricting security, because the Client OS is untrusted and a malicious
client task could copy/modify capabilities. It is also impossible to re-identify a
task, because the Client OS is able to modify the task’s id. This results in two
restrictions:

1. It is not possible to distinguish between different users of the Client OS, be-
cause they can only be identified by their tasks. Therefore all users of one
Client OS instance have the same permissions concerning the secure environ-
ment. Of course is it possible to distinguish them if the secure environment
authenticates the given identification. This leads to the second restriction:

2. Every time tasks of the Client OS (re-)connect to the secure environment,
they have to be (re-)authenticated.

34 CHAPTER 3. SYSTEM DEFINITION

3.3.2 Persistent Storage

As demanded by [SR 296] the secure environment provides separated domains to
enforce independence between subsystems. In order to ensure that these protection
mechanisms cannot be bypassed (e.g. if the system is halted and internal data
is written to another storage) is to use persistent memory. If this is not possible
trusted components should provide a persistent memory behaviour. Persistence
provided by the secure environment has some additional advantages:

1. Subsystems have to be started only once, which is more intuitive to the user
and unifies the behaviour of personal digital assistants (PDAs) containing
static memory and computers with dynamic memory (e.g. PCs).

2. Application developers are relieved from designing and implementing data
input/output mechanism to another persistent storage, which is less error
prone.

3. Implementation of session management function is obsolete because persis-
tence also stores the current state of all subsystems.

To be able to provide a persistent system behaviour on hardware containing dynamic
memory two functions are required: One which stores the complete system state
on a persistent storage (e.g. harddisk) [F80], and the other [F81] which reloads
the system into the state stored on the persistent storage. The following sections
describe the most common approaches to store data persistently:

A flat file system. The most common kind of persistent storage used by a lot
of operating systems [41]. Only simple data operations are provided, which makes
it necessary to subsystems to separate operations (the application) and data (the
files), and to convert the internal data structures into a linear file format. Also
file systems are very error prone, because they only provide more or less reliable
persistence of data and they cannot provide consistency and integrity themselves.
Building a database based on a file system is very inefficient, because file access is
very inefficient.

A database. In contrast to file systems databases provide data consistence,
integrity and persistence. Additionally some databases contain version-control and
recovery mechanisms [8]. Unfortunately development of a database is very complex
and another disadvantage is that developers themselves have to decide wether a
variable has to be persistent or not.

A library. Further approaches use libraries which support functions (or base
classes) to create persistent objects [42]. Using this kind of library is often very
complicated and error prone, because application developers themselves have to
take care that all persistent data is handled by the library.

Persistent Memory Pages. To provide a persistent behaviour memory
pagers can be implemented in such a way that they store memory pages to a per-
sistent storage and reload them on demand. This approach is very similar to the
virtual memory provided by most CPUs, except that the complete system state
(including page table and states of additional devices) has to be stored. Because
some hardware functions (e.g. virtual pages, segmentation) can be used, it can be
implemented very efficiently [26] [15].

The approach to provide persistent memory pages by memory pagers seems to
have the most advantages. Therefore it is evaluated in Section 4.5.2.1. Because
Chapter 4 illustrates that integration of functions which provide persistence can
easily be integrated into the OOD model, Section 4.5.2.2 contains a discussion of
this topic.

3.3. ANALYSIS OF SECURITY REQUIREMENTS 35

3.3.3 Providing Independence Between Subsystems

As demanded by [SR 296], the secure environment has to enforce independence
between subsystems. Consequently, direct access to unsharable hardware resources
of untrusted subsystems, e.g. the Client OS, has to be prevented. Figure 3.2 outlines
the traditional operating system behaviour: It has full control over the system and
allocates all system resources. Device drivers and core components are able to access
the hardware directly. Two basic solutions to bypass this unacceptable state are

Client Operating System
Task 1| | Taskn

Kernel

Device Pager
Driver age

1/0O ports|| Memory BIOS Interrupts|

Hardware

Figure 3.2: Abstract model of a traditional operating system.

possible:

1. Inserting a virtual hardware layer between microkernel and Client OS as
demonstrated by Figure 3.3, like vmware® and its free clone freemware* do
it. The virtual hardware layer catches all hardware accesses of the Client OS
and remaps them into calls to trusted resource managers which consider secu-
rity policies. This approach makes it possible to use every operating system
designed for this hardware as Client OS without modifications. The loss of
efficiency should be small, because only privileged system functions have to
be emulated.

Client OS
Task
Tasi
Task ' Secure Applications
Kernel
} L] . X |
|Virtua| Hardware Layer Application Framework
L L] } Y
| Resource Manager |
) ¥
| Microkernel |
) L]
Hardware

Figure 3.3: System design if a virtual hardware layer is inserted between microkernel
and Client OS.

2. Replacing all components containing hardware access by stubs which access
trustworthy drivers as illustrated by Figure 3.4. This decreases code size and
increases speed, because every driver exists only once. On the other hand

36 CHAPTER 3. SYSTEM DEFINITION

the Client OS has to be modified and this is not possible in all cases, e.g. if
commercial software products shall be used.

Client OS

Task

Task
Task |

—e—‘ Secure Applications

Kernel
Driver Stubs

Network
Driver

| Resource Manager |
L) L]

| Microkernel |
L S

Hardware

Figure 3.4: System design if the device drivers are separated into tasks of the
microkernel.

3. A combination of solution one and two. E.g. some device drivers are replaced
by stubs and the other accesses are emulated using a virtual layer.

The first solution seems to be the more flexible one, but the second is faster
because privileged system functions do not have to have be emulated. Section
4.5.1 presents an example how a virtual hardware layer could be implemented, but
because this is a too complex task for this diploma thesis and developers of the
DROPS® project have experience in writing separated microkernel device drivers
(]43], [31] and [32]) the second or third solution is preferred. The next subsections
contain short discussions of resources which have to be protected.

3.3.3.1 Limiting I/O Port Access

Only one trusted device driver should be able to use the same set of I/O ports at
the same time. Two ways of I/O port addressing are commonly used by CPUs:

1. Separate I/O address spaces besides physical memory (e.g. Intel i386). Special
CPU I/0 instructions are used to access the I/O port.

2. Memory-mapped I/O (e.g. Motorola PowerPC). I/O ports appear in the
address space of physical memory.

If the hardware supports separate I/O address space, (hardware-) access control
with a high granularity is required to make sure that every I/O port can be ac-
cessed only by one subsystem. If memory mapped I/0 is used, paging/segmentation
mechanisms need a high granularity.

3http://www.vmware.com
4http://www.freemware.org
Shttp://os.inf.tu-dresden.de/drops

3.3. ANALYSIS OF SECURITY REQUIREMENTS 37

3.3.3.2 Harddisk Driver

It is important to separate the Client OS and the harddisk driver(s) to prevent the
Client OS from accessing and modifying disks/partitions of the secure environment.
The Client OS should only be able to “see” virtual harddisks.

3.3.3.3 Display Driver

The general way to share a display would be to provide virtual displays (windows)
to all subsystems which need display access. The interface provided by the virtual
displays has to be defined and it has to be decided how subsystems can access them.

3.3.3.4 DMA channels

Even the use of DMA channels, if provided by the underlying hardware, has to be
managed by a trusted component.

3.3.3.5 Interrupts

A trusted component has to control reservation of interrupts and to manage interrupt-
sharing.

3.3.3.6 Tasks

If the number of active tasks/subsystems is limited by underlying components,
permissions to start a new task has to be managed by a trusted component.

3.3.3.7 Events

Some events, e.g. mouse clicks or keystrokes, have to be forwarded to the subsystem
which currently has the focus (gets user input). Events are a more abstract view
of a subset of other resources to be shared (e.g. interrupts). A trusted instance is
required which synchronizes forwarding of events and the subsystem which uses the
DisplayDriver.

3.3.4 Secure Booting

A secure booting mechanism has to provide the integrity of code (protection agains
replacement/changes of components/configurations) and the integrity and confiden-
tiality (protection against spoofing) of data.

Let us assume a bootloader is used which uses an encrypted configuration file and
asks for a password (or a smartcard) on startup to be able to decrypt configuration
files. To prevent attackers from replacing the bootloader to bypass its security
mechanisms the whole persistent storage has to be protected (encrypted/signed)
and the bootloader has to initialize appropriate device drivers with keys (which
themselves are stored encrypted using a password entered on startup by the ADMIN)
to decrypt/test stored data. This approach relies on the fact that the startup
password is secure and that it is impossible to access the password. The second
restriction could be guaranteed by deleting the password (or the whole bootloader)
after decryption of the keys of the device drivers.

Another approach could prevent that attackers can access the persistent storage
(e.g. to replace the bootloader). This makes it necessary to use some kind of
hardware protection like BIOS passwords. I fear that we have to encrypt/sign the
whole data in any case to protect information stored on the persistent storage,
except if we use some kind of self-destroying harddisk or e.g. a device which uses
(internally) dynamic memory and turns the power off if it detects external attacks.

38 CHAPTER 3. SYSTEM DEFINITION

Section 4.5.2 contains discussions about memory managers which use crypto-
graphic functions to provide confidentiality and integrity.

3.4 Packages

Packages are used by UML to summarize other elements (e.g. classes). The concept
of packages is required to build meaningful groups of elements to describe the system
structure on a higher level.

3.4.1 Package: Subsystem

The package Subsystem contains elements to describe and identify subsystems (see
Figure 3.5). In order to be able to store dependencies between subsystems gen-
eral definitions of provided services are necessary. These descriptions have to be
implementation-independent, therefore the class Service describes the Interface and
the Version which is implemented by a subsystem. A subsystem can implement
different services and/or different interface versions. The versioning scheme has to
consider two types of modifications of interfaces:

1. changes (incompatible interface), hence called magjor interface number.

2. extensions (compatible interface), hence called minor interface number.

Consideration of patchlevel or similar features is not necessary because it is interface-
independent.

Subsyst em

Subsystem kenger

T
Subsystemldentifier e
e —
——— Service
1
1 - E
ersion
T
] +m nor Nunber :

Figure 3.5: Components of the Subsystem package.

Figure 3.6 outlines an example scenario: Subsystem z provides two services
s1 and s2 which implement different versions v! and v2 of the same interface 2.
Subsystem y provides only service s2, therefore it implements version v2 of interface
12. Subsystem 2z provides two services, it implements version v1 of interface i2 and
version v8 of interface i1.

3.4.2 Package: AccessControl

Access control can be logically divided into three different parts:

1. The policies (e.g. Bell-LaPadula [7]) are high level rules which determine how
accesses are controlled and access decisions determined.

3.4. PACKAGES 39

vl:Version
x:Subsystem sl:Service

i2:Interface
y:Subsystem s2:Service v2:Version

il:Interface
z:Subsystem s3:Service <
v3:Version

Figure 3.6: Example scenario describing relations between subsystems, services,
interfaces and versions.

2. The model (e.g. RBAC [40]) defines the syntax of rules to express one or more
policies.

3. The mechanism, also known as reference monitor, is low-level software and
hardware functions which enforce the policies and guarantee that it cannot be
bypassed.

Because access control policies depend on security policies and user wishes, it is out
of the scope of this document to define access control policies or to decide which
access control model should be used to define these policies. Therefore the goal of
this section is to provide an access control mechanism which can be used to enforce
different security policies. Demands on the behaviour of the reference monitor are:

1. It cannot be bypassed by other subsystems [SR. 60].

2. A subsystem should only be able to use indirect [SR 400] and locally valid
[SR 405] references to access other subsystems.

3. Global security policy to control subsystems, local policies to individually
refine global policies and protect individual subsystems [SR 299].

4. Possibility for two subsystems to synchronize access to a third subsystem
(bypass [SR 405]) if permitted [F 115] (an example is given in Section 4.3.2).

5. Local references of incoming and outgoing messages have to be synchronized
[F 120] to be able to enforce local access control policies.

The general way to define an access control policy within an object-oriented analysis
model would be to define an access control matrix M 4¢:

S x 0 x M, — {true, false}

with the set of all subjects S, the set of all objects O and the set M, of all methods
accepted by object o € O. Because security is a primary goal of a secure environment
this section provides a more efficient model which is based on results of Section 2.3.1:

The global access control policy grants access permissions to subsystems which
can be refined locally by access control policies, e.g. access control lists (ACL).
ACLs can be enforced by further trusted components and/or by the subsystem
themself. Figure 3.7 proposes an access control mechanism which corresponds to
this model.

40 CHAPTER 3. SYSTEM DEFINITION

AccessContr ol

< sends
1 Jsender
' LocalAccessControl
F‘ ~{equal } fecerver
ecei ver ! RS
«mported» L AR
Subsystem::Service LocalReference | _ _ Sy
_-
T -
sender “{different
: -7 { b Lender
v GlobalAccessControl
1
! recel ver
sends »

Figure 3.7: Components of the AccessControl package.

Subsystems can only access other subsystems via a GlobalAccessControl which
enforces a global access control policy and maps LocalReferences of the sender into
LocalReferences of the receiver. Messages are forwarded to the LocalAccessControl
of the receiver’s subsystem which is able to refine the global policy. Sender and
receiver references are remapped before the LocalAccessControl is invoked to pre-
vent information flow of global references if subsystems enforce local access control
themselves. To fulfill the “always invoked” requirement [SR 60] an abstract message
redirection mechanism enforces that all messages sent by a subsystem are forwarded
to the GlobalAccessControl. Because it has to be a trusted component, users can
trust it to forward messages to the appropriated LocalAccessControl.

3.4.3 Package: Information Flow Control

According to [9] information flows from sender S through a channel to receiver R.
A simple form of information flow is a message M, sent by S to R. To be able to
enforce security policies (e.g. to provide confidentiality), information flows between
subsystems have to be observed by an information flow control mechanism.

Detecting information flows in “real life” is more complex: The decision, if a
message sent from S to R leads to an information flow depends on the message
and the knowledge of R. For example, if R already knows the contents of M, no
information flow has happended. On the other hand, the fact that S has sent
a message to R can lead to an information flow. Also the fact that S sends no
message or to know that a subsystem is available or not can be an information flow.
These kinds of information flows are called covert information flows. As you can see
controlling flows of information is a very complex matter and different approaches
exist how control rules can be enforced.

To avoid using a monitor which detects real information flow it would be pos-
sible to consider only theoretical flows. That means that the policy assumes that
an information flow has taken place if it could. This approach can be enforced
by access control policies if all possible flows are considered when permissions are
granted to the subsystem. For example, to guarantee assurance levels of services
or applications, information flows from highly trusted components to components
with a lower trust level can be prevented if write access to subsystems with a lower
trust level is not allowed. To be able to do that, the installation process can deduce

3.4. PACKAGES 41

assurance or trust levels and assign them to every component (this is discussed in
Section 3.4.5). If assurance levels are assigned to every subsystem, the information
flow mentioned above can be controlled by enforcing e.g. a security policy according
to BELL and LAPADULA [T7].

A more flexible (and more complex) approach could analyse the source code of
subsystems (e.g. according to DENNING [14]) to detect possible data flows within
the subsystem to consider them by the derivation service while permissions are
granted. The results of the sourcecode analysis can be made public, e.g. by trusted
parties (see Section 4.9.3.1).

The most complex approach would be to provide an information flow monitor
which checks every message sent between subsystems and aborts them if it detects
a forbidden information flow. The monitor could also consider evaluation results of
information flow analysis of subsystems.

Information flow control is a very interesting topic and should be considered by
the design of security mechanisms, but I decided not to consider information flows
within the first prototype. Thus the package InformationFlowControl is left empty.

3.4.4 Package: ResourceManagement

This package contains interface definitions of services to manage unshareable re-
sources as demanded by Section 3.1 and Subsection 3.3.3. Figure 3.8 shows depen-
dencies between different types of resource managers.

Resour ceManagenent

DMAManager DisplayManager EventHandler
+reser veChannel () +reserveDi spl ay() +reser veEvent ()
+r el easeChannel () +r el easeDi spl ay() +r el easeEvent ()

T T

: 1 1

1 1 1

[I A~~~ ~"============ h

I I 1

I 1 1

') Y Y
PortManager F -7 > MemoryManager InterruptManager
+al | ocatePort (:Port): bool i +al | ocat ePage(si ze:): Page +reservelnterrupt()
+f reePort (: Port) . +f r eePage(: Page) +r el easel nterrupt ()

H T

* N ! N
Menor y- mapped LREE T Provi ding virtual
/o ! nmenory

{
"]

HarddiskManager

+al | ocat eBl 0Ck() SubsystemManager
:I;gg: 82&8 +al | ocat eSubsyst en()
+wr it eBl ock() +Hr eeSubsys;t em()

M cr oker nel

Figure 3.8: Components and their dependencies of the ResourceManagement pack-
age.

3.4.5 Package: SubsystemManagement

If users want to update/delete subsystems they have to be sure not to decrease the
security of the secure environment. Also the installation of new subsystems is a very
security-related procedure, because installation of malicious software can produce
security holes. The following facts have to be considered:

1. Subsystems need a way to access subsystems which provide required services
(Section 3.4.5.1).

42 CHAPTER 3. SYSTEM DEFINITION

2. The subsystem’s code has to be downloaded (Section 3.4.5.2).

3. The permissions/capabilities of the new subsystem have to be derived (Section
3.4.5.3).

4. When updating/removing subsystems, dependencies between subsystems have
to be considered (Section 3.4.5.4).

5. To be able to start the new subsystem the linker format has to be interpreted
correctly (see Section 3.4.5.5).

The next subsection contain discussions of these topics.

3.4.5.1 Service Definitions

As defined in Section 3.4.2 ACEFs have to provide only local valid references to
encapsulated subsystems [SR 405]. The OOA model assumes that all subsystems
use local references which have been assigned to exactly one service-version and
which are mapped by a function [F 75], called naming service, into global references
of the system environment.

3.4.5.2 Loading New Content

To ensure that the security of the system is not reduced the secure environment
has to provide integrity of the downloaded content. To install new subsystems, a
system has to move data into memory. In most cases the subsystem’s data is copied
by a system function from a filesystem into a reserved memory area, but this is
not a must. It is also possible to get the data via FTP, NFS, or HTTP. Thus, in
general the data has to be copied into the memory via an (undefined) protocol. As
explained above the interface provided to download contents should be independent
of the data transfer protocol to make it easy to add new protocols. It is common to
select the protocol implicitly or explicitly by the destination address of the content,
e.g. “http://www.semper.org’, or “ftp://ftp.linux.org’. The interface should
consider this. The class Loader contains all related operations.

3.4.5.3 Permissions of New Subsystems

Before new subsystems can be started their permissions are derived by a Deriva-
tionService. Rules which define permissions of new subsystems are user and security
policy dependent, thus the implementation should be policy independent. Users
have to define rules wether and how components of different trust levels are allowed
to interact. It is the access control’s job to enforce these rules.

3.4.5.4 Dependencies Between Subsystems

To make sure new content can be installed, the installation process should be able to
check if dependencies between subsystems are fulfilled, e.g., if all required services
(and compatible versions) are available. Also it should be possible to install differ-
ent versions of the same service in parallel (if two subsystems depend on different
versions of another subsystem, see Use Case 2.2.4). It should only be possible to
replace an existing subsystem by another one if it provides the same functional-
ity (e.g. a higher/lower patchlevel or higher minor interface number). Removing of
subsystems should only be allowed if no other component depends on them (provide
reliability). Dependencies are stored by the DependencyDB [F50] which is updated
by the SubsystemManager.

3.4. PACKAGES 43

3.4.5.5 Starting a new subsystem

To start a new subsystem the secure environment has to execute the following list
of actions:

e Check if the loaded data is an executable subsystem for this system and pro-
cessor. This information is provided by a data-header created by the linker of
the binary. Widespread formats used by many Unixes are the old a.out, the
newer ELF or the multiboot-header-format used by Fiasco and the GRUB
bootloader. To be able to use existing development tools the system should
know at least one of those formats.

o If the data is recognized to be executable, different sections of the binary, e.g.
the code-, data- and stack section, have to be identified.

e A new address space has to be created and the system has to copy the different
sections into the new address space depending on some general rules (e.g. the
code-segment is only accessed read-only, the stack and data segment read-
write).

e Some special addresses of the code-segment have to be identified. For example
every C program is started by the main() function, but if, e.g., C++ is used,
static data has to be initialized before.

e The last step is to create a new thread, to initialize its registers with references
to the code, stack and data segment and to execute it.

The class Installer provides all related operations to start a new subsystem. The
class SubsystemManager provides an abstract interface to install /update subsystems.
This class also provides the interface SubsystemManager of the ResourceManagement
package, discussed in Section 3.8, to manage/grant rights to start new subsystems.

3.4.5.6 Conclusion

Figure 3.9 summarizes all classes of the SubsystemManagement package.

Subsyst enanagenent |

Facade «| npor t ed»

ResourceManagement::SubsystemManager
: Loader
DependencyDB | «updates : Bes Y e adContent ()
—— 1
SubsystemManager Uses s Installer

+start (: Destination)
+hal t (: Subsyst em dentifier)

#start(): Subsystem

«l npor t ed» manages uses» DerivationService
Subsystem::Subsystem = g

#der i vePer m ssi ons()

Figure 3.9: Contents of the SubsystemManagement package.

44 CHAPTER 3. SYSTEM DEFINITION

3.4.6 Package: Crypto

This package contains cryptography-related classes required by Use Case “Signing
an Email” and “Generation of a new Key Pair”. The implementation of the class
Converter depends on provided crypto standards.

Crypto

Key Random

#gener at e() #randonByt es(): RandonByt es
#sign(:Digest): Signature
#t est (: Di gest, : Signature): bool

Converter
Hash
- = #t ext ToBi nary(: Text): Binary
#hash(: Bi nary): Digest #bi nar yToText (Bi nary:): Text

Figure 3.10: Components of the Crypto package.

3.4.7 Package: KeyManagement

Of course secret key data have to be stored by the secure environment and must not
be accessible by the Client OS except through well-defined interfaces (subsystems).
But also public keys have to be stored to be able to verify a path of certificates.
They have to provide a crypto-standard independent mechanism to identify owners
and to verify authenticity. [47] contains a detailed discussion of this topic.

KeyManagement
PrivateCertificate
[FTTnd(Tdentifier) . PrivateCertificate |
<creates [FTMICIdentifier) PrivaleGeriificate orypto
+r emove(: | dent i fier
+cr Priv. rtifi +Hash
+si gn(Text:): Si gnedText +Key
+test(: Text,:SignedText): bool | [====-- > +Converter
+extract (): PublicCertificate +Random
PublicCertificate

[Fnd(_Tdentifier). PublicCertificate |

+add(- PublicCertificate) Userldentifier

+r emove(: [dentifier)

+test (: Text,: SignedText): bool

+authenti cate() bool

Figure 3.11: Components of the KeyManagement package.

3.4.8 Package: TrustedPath

To be able to provide a trusted path as demanded by [SR 255-357], all software
layers between subsystem and output device have to be trusted or cryptography
has to be used to provide confidentiality and integrity. These topics are discussed
in Section 3.4.8.2 and Section 3.4.8.3.

Additionally both ends of the trusted path, the subsystem and the user, have
to authenticate each other. Authentication of the subsystem is discussed in Section
3.4.8.1, user authentication is examined in Section 3.4.8.4.

3.4.8.1 Subsystem Authentication

It is important that users know exactly which application they are communicating
with, to prevent malicious subsystems from pretending to be another one. This

3.4. PACKAGES 45

information always has to be provided by the secure environment outside control
of the subsystem itself. Three different approaches can fulfill this requirement:

1. Additional hardware (LED or an additional display) can be used to provide
this information to the user.

2. The second approach uses a reserved display region to display this information.
This requires the secure environment to guarantee that no other subsystem is
able to access this region.

3. The third approach is used e.g. by Java which adds a reserved yellow region
to every applet window, to prevent that malicious applets pretend to be a
system window. Certified applets do not have this warning region.

Using extra hardware to show the trust level makes it possible for existing appli-
cations to use the whole display as they are used to, but requires to modify the
hardware. Because this is not possible for me, this solution is not examined. Using
a reserved region of the display to show the trust level to the user restricts the size
of the display, therefore some applications may not work without modifications®.
Another disadvantage is that only the security level of one application can be shown
at the same time.

The usefulness of the second and third approach heavily depends on the size and
general use of the display. If the display is small and usually used by only one fixed-
sized application (PDA), both solutions are equal and the second solution seems to
be simpler in this case. Some design decisions for small displays are discussed in
Section 4.5.4.1.

If, in contrast, the display size is large and more than one application is visible
at the same time (PC), the third solution should be preferred. To provide a trusted
path at least the area which contains the reserved region has to be drawn by trusted
components which have to be protected from malicious attacks by a separated
protected domain. Section 4.5.4.2 contains a discussion of this topic.

3.4.8.2 Package: TrustedGUI

To be able to provide a trusted communication path to local users as demanded
by [SR 355-357] the secure environment has to access the display device itself to
prevent modifications made by the Client OS. In order to provide confidentiality and
integrity for information displayed by GUI widgets secure applications should use
a trustful GUI toolkit implementation [F 100] provided by the secure environment.
To keep the probability of errors small and make verification easier, only a small
subset of GUI classes should be provided by the trusted GUI. Table 3.1 lists all GUI
widgets the trusted GUI has to provide. Of course it is possible for each subsystem

window = virtual display

message box (ok, yes/no, yes/no/cancel)
push button to make yes/no/cancel buttons
combo box for 1 of n selections

line edit field type names, IDs, passwords
label to display static text or graphic
scrollbar to show large documents

Table 3.1: List of widgets the trusted GUI has to provide.

to provide its own GUI implementation, but this is very complex, error prone and

8This is not valid e.g. for X, because it can be configured to have any size.

46 CHAPTER 3. SYSTEM DEFINITION

makes it necessary to check and evaluate the whole GUI implementation to certify
a subsystem. Another advantage of separation between GUT toolkit and subsystem
is that users can decide themselves which GUI implementation they want to use.
Three approaches to separate GUI interfaces and implementations which depend
on the functionalities provided by the underlying system exist:

Static Libraries. If the system provides only static libraries users have to
compile subsystems themselves to link them with their own GUI implementation
or they have to trust the content provider to use the correct library. Alternatively,
developers who want to distribute their software only in binary format could provide
the object-file which users have to link against other libraries themselves.

Shared Libraries. Using another GUI implementation is much easier if the
system provides shared libraries, because this makes it possible to exchange the
library-implementation at any time.

Separated address spaces. It could be a disadvantage of the two above-
mentioned approaches that the GUI library and the subsystem share the same
address space (e.g. malicious subsystems can access also private and protected C++
data). If the GUI toolkit is implemented using its own address space (service), this
can be prevented.

3.4.8.3 Trusted Document Viewer

As demanded by Section 3.2 a document viewer is required to make it possible for
users to verify documents [F 105]. The data-format used by the viewer should be
system-independent (e.g. HTML or XML) and publicly available. The viewer has
to use a trusted GUI toolkit to provide confidentiality and integrity.

3.4.8.4 Package: UserAuthentication

This package contains classes which relate to user authentication. At least two au-
thentication mechanisms, PasswordBased and SmardcardBased, should be provided
by the system.

3.4.8.5 Conclusion

Classes required to provide a trusted path between subsystem and user are con-
tained in the TrustedPath package. Components of the trusted GUI got their own
subpackage TrustedGUI and components of the user authentication are separated
into the package UserAuthentication.

3.4.9 Package: CommunicationPath

To prevent that every Client OS application which uses components of the secure
environment has to be modified, a communication path [F 3] between Client OS
and secure environment should exist. It should be as flexible as possible to fulfill as
many demands of different scenarios as possible and an existing protocol should be
selected to make it easier to adapt existing Client OS applications. The following
protocols are well-known and often used by Unix systems:

1. A network connection (TCP/IP).
2. Remote Procedure Call (RPC).

3. CORBA.

3.4. PACKAGES 47

Tr ust edPat h
User Aut hent i cati on |
Tr ust edGUI

UserAuthentication | [_ _ _ . | .
+W ndow
+aut hent i cat e() +MessageBox
+PushBut t on
+ConboBox
+Text Edi t
DocumentViewer - - - - - - > +Label
+Scrol | bar
+showDocunent ()

Subsyst emAut hent i cati on

v v
DisplayManager::ResourceManagement

Figure 3.12: Components and subpackages of the TrustedPath package.

Because both protocols, RPC and CORBA, use TCP/IP as transport layer and a
lot of services (smtp, pop3, X Windows etc.) also use TCP/IP it should be con-
sidered if it is possible to establish a virtual network connection which internally
uses p-kernel IPC as communication path between secure environment and Client
OS. This makes it possible to develop higher protocols later. Another advantage
of this approach is that nearly all modern operating systems have an abstract in-
terface supporting TCP/IP which hides the data transport layer (ethernet, serial
line, IrdDA etc.). This simplifies creation of a communication path because only a
new driver implementing the TCP/IP interface has to be written and applications
do not have to be modified. More advantages are mentioned in the next para-
graph. Alternatively a new protocol or interface (e.g. provided by a library) based
on p-kernel IPC can be used. This should be faster, but requires modification of
every application accessing the secure environment. The advantage of the TCP/IP
approach can be illustrated using the Use Case “Signing an Email”:

If the secure environment provides SMTP/POP3 services, a mail client
of the Client OS can easily be adapted by configuring it in such a way
that it sends all outgoing messages to the SE’s service and receives all
incoming messages from the SE’s POP3 server. If the Client OS is
Unix-like, adapting is even simpler, because only the sendmail service of
the Client OS has to be reconfigured to send/receive to/from the secure
environment. If the SE controls the network device (Figure 3.13 (b))
it can enforce using its services by deleting (filter) all messages sent to
other services.

Two different approaches are conceivable, using TCP/IP as communication path,
outlined by Figure 3.13:

1. The Client OS keeps control over the network adapter and can establish a
point-to-point connection to the secure environment (a).

2. Control over the network adapter is moved to the secure environment which
acts as a default gateway to the Client OS (b) which forwards all network
traffic to the secure environment.

48 CHAPTER 3. SYSTEM DEFINITION

a) b)
Linux kernel Secure Environment Linux kernel Secure Environment
app app
IP stack
net\;vork | virtual ‘ | virtual | @ k
- | network, router | network | router || & ||newor
evice | | idevice ! | device_! & ||device
¥ I ¥ L’77I777‘ T — 1 |

network| | I— Q‘—' network
adapter| internal network (u-kernel IPC) internal network (pi-kernel IPC) adapter|

external network

Figure 3.13: Internal communication path if a) Linux and b) the secure environment
controls the network device.

As you can see the second solution has the advantage that more than one Client
OS could be used if every instance gets its own IP address. Further the secure
environment can act as a firewall to the Client OS instances, because it can control
all network traffic from/to the Client OS’s. To avoid implementing a network device
driver for the secure environment I prefer (for this prototype) the first solution,
although the second seems to be the more secure (and flexible) one.

Conmuni cat i onPat h

Router -
- Routi ngTabl e: Device
+addDevi ce() +sendPacket ()
+r enoveDevi ce() +r ecei vePacket ()
+rout e() T

{i nconpl et e} !

1
NetworkDriver

VirtualNetworkDevice

Figure 3.14: Classes of the CommunicationPath package between subsystems.

The UML diagram 3.14 describes required classes and interfaces of the package
CommunicationPath. The Router is a service which routes packages received from
devices (IP numbers) which can register or unregister themselves. The VirtualNet-
workDevice driver of the Client OS and every subsystem which represents a network
device (e.g. a trusted network driver) has to implement the Device interface. Packet
filters shown by Figure 3.13 can be implemented in three different ways:

1. Directly implemented by the Router subsystem.
2. Extend the Router interface by methods to insert external filters.

3. Using a Device instance which acts as a default gateway, receives all network
packets, filters them and sends them back.

In order to avoid implementing a new TCP/IP packet filter (and if demanded
security-levels are not too high) it would be possible to use the filter and fire-

3.5. OOA MODEL 49

wall mechanisms provided by another minimalized LINUX kernel, protected by the
secure environment.

3.5 OOA model

Figure 3.15 outlines layers and their components of the current system model. Below
the red line we have the hardware and the p-kernel which hides hardware-dependent
concepts. Based on the p-kernel (between red and yellow line) the secure platform
provides security-related core components which provide separation and protection
of subsystems. These are an access control mechanism, resource manager and sub-
system management functions. The application framework above the yellow line
contains services which can be accessed by the application layer (above the green
line). Dependencies between services of the application framework are not repre-

Client Secure Viewer Stock
oS Email trading
Applications
Green
Line
; ; Virtual Access
Con;n’ntl;]mc. geram.lng Hardware/ Sgrr ypto Control Trusted
a vice Drivers vices Policy GUI
Application Framework (Services)
Yellow
Line
Access Control Resour ce Subsystem
M echanism M anager Management
Secure Platform
Red
Line
Microkernel
Hardware

[| Pretended components
[] Tobe developed

Figure 3.15: System model after analysis phase.

sented by this figure, but they are outlined by the UML diagram (Figure 3.16)
which contains all components mentioned in the analysis phase.

The main difference between this model and the model suggested by the PERSEUS
proposal is that the secure platform only contains elementary components and that
the Client OS is only one application besides others, which is able to access services
of the application framework. This is possible because the assurance level of appli-
cations is defined by the access control policy and enforced by the access control
mechanism.

50

CHAPTER 3. SYSTEM DEFINITION

51

OOA MODEL

3.5.

1xal :(:Aseuig)ixalolAreu g
Aseur :(1xal :)Aseu igoL 1xa 14|

19119AU0D

B

Sasn v

<sasn

JaynuaplIasn

o
1000 : (1ajpaus o
i

5 125 1108y e]
a1) 180 4]
3

B ECAP R AR R

21e31J1112221(qN.

d

(el

978 14111809 1 [and
(axayl

. 1) 158 14|

o]

(I3 1] TIUSp - J3Aana T

[CRLERFRRPCOERLNP"]
T

a1edlj11a081eALd

L2l EREE

Sosn v

Sosn ¥

uausbeugN Aoy

0 1189 1308 I3 15ASang|

[_O)waunacgmoysy]

JamalAluaWno0g

Jeq | 0195+

1aqeT+
11p3 1Xal+
X080GUOD+

uo1Ingysnd+
xogabessaN+
MOpU M+

rBpa 1sn 1]

[Osieo nuayines]

uoneInUAYINYIASN

Uo 119 11uaY 1Ny 13|

U18dpa 1sn 11|

I i [FETS-TORTICYC)=) Spppupupupy S

9212 I0MIBNENLIA

O ETEREINCECI
0 1ooedpuas+]

U T8qUO 1789 [unua))|

* 190 140 Ted+]
Jaquny Jou |
J2qunN 10 faus

UOISIOA

EEE

<Spuss

19pud

{enba)~ .

197 1999

N
'
'
'

] JaynuapjwaisAsqns

Spuas >

[CERICSEEEEEY

EEEE

Sosn v

<sasn/

W5 15A5qng|

J18][eISu|

()15 Woopeo |#]

<sasn

(13 1y nuap wa1sAsans 1)1 [ey+|
(uo yeu 11530) 1 8 154
(Jua15ASqNS08 1 4+

Jua 15Asqnsa 1890 | e+

JabeuepwalsAsqns

20118 BulweN

V
(2 15ksqnsa8 1 17
(Jua 15ASqnSa 1890 | e+

JabeueWalsAsqns

Aiauau
A Bu1p 10 id

(0n 179 10 12583 13 11

1dn 1 42 2u 97 1353 I+

Jabeuepidniaiul

(

20 18311
(100 1gpea i+
()420 [@@a 1 4+
()90 g2 1820 | [e+

J1abeueNsIppIeH

[RE
2 15)abeds 1890 | [e4]

o/l

1SAsans|

)ke [ds Gases [17]
Ae |ds Qan asa i1

JabeuewAe|dsig

() 1suueLDaSES |3 14]
() [uuBYDAA 1853 I+,

Jabeue YA

T

uauabeugNed Nosay|

: The OOA model.

Figure 3.16

52

CHAPTER 3. SYSTEM DEFINITION

Chapter 4

Design

The preliminary PERSEUS architecture [21] suggests to use FIASCO as microkernel
and L4-LINUX as Client OS. I decided to use them, too.

4.1 General Assumptions on the Underlying Com-
ponents

This section describes assumptions and demands on components below the red line
of Figure 3.15 to be able to fulfill some general security requirements of Chapter 3.

T assume that a mechanism is provided which protects different subsystems from
each other. Such kind of protection is required by [SR 295], [SR 296] and [SR 297]
to protect subsystems, especially the access control components, from interference
and tampering by untrusted subsystems. Separated address spaces provided by the
hardware is a usual way to fulfill this requirement.

Additionally it is assumed that the microkernel provides an internal communi-
cation channel between subsystems that provides confidentiality and integrity to
protect internally transferred data as demanded by [SR 355] and [SR 260].

To be able to build a monitoring component that is “always invoked” as described
in the Common Criteria, subsystems must not be able to initiate a communication
to other subsystems without recognition by the kernel.

4.2 The Fiasco Microkernel

This section gives a short overview of the F1ASCO microkernel. It contains excerpts
from [19], [27] and [25].

The FIASCO microkernel is a new implementation of the L4 microkernel in-
terface for the x86 architecture. L4 is a microkernel interface defined by JOCHEN
LIEDKE, and there exist implementations for the x86-, the MIPS- and the Alpha
CPU. L4/x86 is implemented in highly-optimized assembly language and it is not
freely redistributable. In contrast to the L4 microkernel, FIASCO is completely
implemented in C++ and distributed under a freeware (open-source) license.

Address Space. At the hardware level, an address space is a mapping which
associates each virtual page with a physical page frame or marks it non-accessible.
The microkernel hides the implementation of virtual memory pages by providing
the concept of address spaces, which protect a subsystem’s code and data. The
basic idea is to support recursive construction of address spaces outside the kernel.
Three operations, implemented by IPC, are provided by Fi1asco:

53

54 CHAPTER 4. DESIGN

1. The owner of an address space can grant any of its pages to another space if
the recipient agrees. The granted page is removed from the granter’s address
space.

2. The owner of an address space can map any of its pages into another address
space if the recipient agrees. The granted page can be accessed in both address
spaces.

3. The owner of an address space can flush any of its pages. The flushed page
remains in the flusher’s address space, but is removed from all other address
spaces which had received the page directly or indirectly by a map or grant
operation.

I/0. Although documented in [19, page 14] the F1asco and the L4 microkernel
do not have a concept to mediate I/O ports. In Section 4.5.3 a basic concept to
securely control and mediate I/O port access is presented.

Threads. A thread is the basic execution abstraction. A thread has an ad-
dress space (shared with other threads), a unique thread-id (TID), a register set, a
page fault handler (pager) and an exception handler. The pager and the exception
handler are threads running within the same or another task. IPC operations are
addressed to threads via their TIDs.

Task. A task contains an address space and all threads belonging to the address
space. A task itself is no active entity, only threads are able to act.

Inter Process Communication (IPC). It is the only’ communication mech-
anism between threads of different address spaces provided by the F1ASCO micro-
kernel. CPU aligned words and bytestrings can be copied by reference and by
value. IPC is used by F1asco for interrupt-handling, pagefault-handling, exception-
handling, wakeup-calls and grant/map/flushing of pages. The independence be-
tween subsystems is guaranteed, because F1Asc0’s IPC mechanism enforces a cer-
tain agreement between sender and receiver and it guarantees confidentiality and
integrity of the message.

Clans and Chiefs. Clans and chiefs are a basic mechanism to implement
arbitrary security policies. They allow controlling TIPC and thus information flow.
A task’s creator is that task’s chief, all tasks created by a chief are that chief’s
clan. Tasks created by a chief can create subtasks and subclans on their own. If a
message is sent to a thread outside the clan it is delivered to the sender’s chief and
vice versa, if a task gets a message from outside the clan the message is sent to the
receiver’s chief. This is FIASCO’s kind of message redirection.

Resource Allocation. Each resource is allocated on a first-come-first-serve
basis. Initial services have the chance to allocate resources and can then mediate
them depending on their philosophy.

4.3 General Design Decisions

This section discusses some global design decisions applicable to nearly all subsys-
tems.

L Also shared pages can be used as a communication channel. But because pages can only be
shared using IPC, controlling IPC means controlling the existence of information channels between
subsystems. The difference is that it is not possible to control (on demand) the data flow between
subsystems which share memory pages. To ensure that no covered data flow exists it is necessary
to evaluate the subsystem’s source code (see Section 3.4.3) and to restrict permissions to share
pages. To be able to revoke the permission to share pages (see FMT _REV) a trusted component
has to manage all pages shared between untrusted subsystems (currently not possible).

4.3. GENERAL DESIGN DECISIONS 55

4.3.1 Methods and Interfaces

The model proposed in Chapter 3 assumes that underlying components, which pro-
vide protected domains, support object-oriented concepts. F1ASCO uses the tasks to
protect subsystems against each other, but the concept of methods is not supported.
Therefore I use the following mechanism (which is also used by the RMGR of the
F1asco package) to emulate it by the IPC mechanism of the F1ASCO microkernel:
The first inlined dword t argument, hence called MessagelD and provided by all
IPC functions, is used to select the method to be invoked.

To control access to different interfaces which are implemented by one task,
different threads of the same task provide these interfaces which can then be con-
trolled separately. The UML notation is modified in such a way that the alternative
symbol of interfaces, which uses a circle, defines those interfaces which have to be
implemented by different threads. This modification is required because UML only
uses the three visibilities public, protected and private. Figure 4.1 illustrates an
example of a subsystem which uses two threads to provide three inherited interfaces.

«Rol e» «Rol e» «Rol e»
Interfacel Interface2 Interface3

__________ R

{Interfacel, Int erface%} Subsystem

{Interface3}

Figure 4.1: Illustration of the modified UML syntax: Two threads are used to
provide three inherited interfaces.

The stereotype “Role” is used to remark that permission to access the interface
is bound to a role. Developers have to consider that Messagelds of roles which may
be implemented by one thread (Interfacel and Interface2 in this case) do not overlap.

4.3.2 Separate interfaces and protocol implementations

A lot of system services are required which shall be easily extendable by new pro-
tocols. To be able to install/delete protocols without global changes (to prevent
re-evaluation), services have been separated into different subsystems which are
managed by a subsystem which acts as a Proxy. Figure 4.2 illustrates the general
design model: A ServiceManager (which acts as a proxy) implements the Service
interface and additionally an interface Manager to install/delete new services. The
ServiceManager registers with the naming service and forwards incoming requests
to appropriate service implementations. Therefore the implementation of the Ser-
viceManager instance can be kept small and simple. Because external subjects do
not know how many protocols a service implements, the method register() in-
vokes Service instances to register themselves to a given Manager implementation?.
Another advantage of this approach is that protocol implementations of different
providers can be used in parallel and cannot disturb each other. The Proxy pattern
is also used by services to fulfill a requirement of Section 2.1, which demands that
subsystems are able to refine or extend the default behaviour of services (see Figure
4.3): If the system provides a global Service (or ServiceManager) z, subsystems can

2This is an example scenario which makes it necessary to synchronise local references between
two or more subsystems: To invoke a Service to register to a manager the Manager argument of
the register() method has to be synchronised.

CHAPTER 4. DESIGN

Manager K Service

+regi st er Servi ce(Service:) +service()

+unr egi st er Servi ce(Service:) R +r egi st er (: Manager)
/) * Z;
------ ,--;"------------ 1
(I nmanages » !
1 ISer vi ce
I,’ —— o - o - — -
v 1 :
ik 1
Manager } O— «Proxy»
{ _g ! ServiceManager Imp1 Imp2
{Service}

Figure 4.2: Design of separation of interface and protocol.

| Local extensi onBI

service() y:Service
Service : Vanager registerService()
O— a:ServiceManager —Q—OW
service(QO— x:Service
Service

.
2

.

|G obal Servi ceManager I5'

Local Servi ceManager B|

Figure 4.3: Dependencies between Manager and Services.

4.4. PACKAGE: ACCESS CONTROL o7

initiate their own SeviceManager a and register further (or only other) services y.
Two different implementations have to be distinguished if ServiceManagers them-
selves are registered to other ones:

1. If ServiceManager a registers itself with another ServiceManager b access con-
trol only checks if a has permission to access ServiceManager methods of b.

2. If ServiceManager a calls its registered services to register to another Service-
Manager b, access control separately checks if these services have permissions
to register to ServiceManager b.

The first solution should be preferred to ease changes and extensions, e.g. of global
services. The Proxy pattern given by Figure 4.2 has to be refined by concrete
implementations and the design of the Loader package (Section 4.10) is an example
implementation.

4.4 Package: Access Control

To get a flexible, less error prone and policy-independent reference monitor, access
control should be separated into policy-dependent and policy-independent compo-
nents [9] [38]. According to [SR 298] the policy-independent part, the Access Control
Enforcement Facility (ACEF), has to be always invoked [SR 60] whenever a sub-
system accesses another subsystem. The policy-dependent component, the Access
Control Decision Facility (ACDF), decides if the demanded access is allowed or
not; it encapsulates the security policy. This approach keeps the ACEF policy-
independent, prevents changes of the ACEF if the policy is changed and leaves all
other subsystems access control independent. Because the ACEF provides only a
small amount of functions it can be kept small and (hopefully) error-free. The
ACDF contains policy-dependent rules which define access control policy. Because
the ACDF can be accessed by the ACEF only by a fixed set of messages, it is
possible to change the rules of the ACDF, or to exchange the ACDF on demand.

The general model has been discussed in Section 3.4.2, but because F1Asco does
not provide a message redirection mechanism, its chief & clan concept is used to
enforce the always invoked requirement:

A trusted ACEF implementation is used as a subsystem’s chief which catches and
forwards all upcoming messages. In order to synchronize incoming and outcoming
messages the ACEF internally maps local references into global ones. The ACEF of
the receiver maps global references into local ones of its encapsulated subsystem.
Thus communication between ACEFs uses global references. Figure 4.4 outlines an
abstract model which illustrates virtual and real data flows.

Thread-based IPC mechanisms influence the access control decision facility in
that way that it has to decide if a given task has permission to access a demanded
thread. This restriction is required, because information of threads which run within
one address space cannot be protected from each other (except information flow
analysis proves independence of threads, but this is currently ignored). Thus the
access control policy has to be defined by an access control matrix M 4¢:

S x R X My, — {true, false}

with the set of all sending tasks .S, the set of all receiving threads R and the set M,,
of all methods accepted by the receiving thread R.

58 CHAPTER 4. DESIGN

sender:Subsystem P| receiver:Subsystem

. H
I ocal references : gl obal references : | ocal references
: :

——Pp virtual message

----preal nessage

Figure 4.4: Real and virtual data flow between sender and receiver.

4.4.1 Global Security Policy

In order to make it possible to use more than one access control policy in parallel,
the access control decision facility is designed using the Proxy pattern described
in Section 4.3.2. The ACDFManager only returns true (access allowed) if all man-
aged ACDFs (all policies) agree. To enforce global access control only one ACDF
instance (a Singleton) can be used (to simplify changes of access control policies),
or individual ACDFs can be assigned to ACEFs on installation. Figure 4.5 outlines
ACDF-related classes.

Manager «Access Control Policy»

g i Proxy Aepe

+regi sterPolicy(: ACDF) . e

+unr egi st er Pol i cy(: ACDF) Tizeeent “-~-[*alTowed(sender :, recei ver:): bool
0

Lo-o"
ACDFManager
-acdfs: ACDFs

al | owed(sender:, receiver:): bool
regi st er Pol i cy(: ACDF)
unr egi st er Pol I cy(: ACDF)

hi des »

[T

Figure 4.5: ACDF related classes of the AccessControl package.

4.4.2 Access Control Lists

Permitted subjects are able to assign an ACDF which acts as an ACL to the ACEF
of a subsystem. Because an ACDFManager (see above) can be used, it is possible
to consider more than one ACL in parallel. Users should be able to define a default
ACL, assigned to every created ACEF by the SubsystemManagement package.

4.4.3 Reference Mapping

As described above the ACEF implementation has to map local references into global
ones and vice versa, and it has to synchronize references of incoming and outgoing
messages. A fixed mapping between services and local references as proposed by
the OOA model (Section 3.4.5.1) has some important disadvantages:

1. It is difficult to synchronize unique references of all existing services. At least
one party has to support a database containing all local reference to service
mappings.

4.4. PACKAGE: ACCESS CONTROL 59

2. The datatype of the local reference has to be very large to prevent shortage
of available local references. This produces more overhead and uses system
resources.

3. Range-checking is not possible. Also efficient mapping of references using
an array is not possible, because this requires a continuouse range of local
references.

Thus a naming service which maps service names into global references is provided
by an interface NamingService. The input parameter of the NamingService is a String
type which describes the required service. The subsystem’s view of the type of local
references is Threadld to make no differences between internal and external services;
the ACEF converts them into an integer type to be able to uses them as indices of
an array.

The NamingService interface is implemented by the ACEF which can return the
global Threadld if the service is available in the same clan (faster access). Else a
new entry is added to the array of Threadlds. Using the naming service does not
decrease efficiency, because it has to be invoked only if the service is accessed the
first time. The persistence of underlying components (see Section 4.5.2.1) stores
mappings until the subsystem is removed.

«Rol e»

«Rol e» ACEFManager
ACLManager 9 d
- - +changeRef er ence(ol d: Thr eadl d, new. Thr eadl! d) < updat es
+regi sterPol i cy(: ACDF) +set ACDF(acdf : ACDF=0)
+unr egi st er Pol i cy(: ACDF) +pol i cyChanged()
L 1
/registers»
queries»

| | obal access control

Subsystem lclhi ld chief ACEF ACDF
7"

1|-mappi ng: ArrayO Threadl d

.. +al | owed(sender:, receiver:): bool

--------- CC v

queries» TTteeel.
T T T T T s e e 1 -.":.-' : - .
v /Reference}
«Rol e» «Rol e» v, Monitor
NamingService ServiceDatabase et .
+find(service:String): Threadld +regi sterService(service: String)
+unr egi st er Servi ce()

Figure 4.6: Design of the class ACEF.

The interface ACEFManager provides management methods to be used by trusted
components, e.g. security management modules. If global references of services
change (e.g. updated or restarted) the method changeReference() can be used
to update the ACEF’s internal mapping table. To revoke the capability to access
another subsystem the new Threadld can be made invalid. The method setACDF ()
replaces the ACDF used by the ACEF and the method policyChanged () has to clear
the mapping table and enforce the ACEF to re-check permissions if the subsystem
use them the next time. It has to be considered that also shared pages have to
be flushed to be able to re-check the permission to share pages. Therefore some
management functions are required to store a list of shared pages. For example the
subsystem’s ACEF could internally update a list of pages of its subsystem’s shared
pages and flush them if the method policyChanged() is invoked.

The interface ACLManager can be used to set/change/remove (locally) access
control lists. It is available to the encapsulated subsystem to enable enforcement of
local policies by the subsystem itself. The interface and behaviour of ACLManager
and ACDFManager are very similar, therefore the same interfaces have been used.

60 CHAPTER 4. DESIGN

The interface ServiceDatabase provides methods to register/unregister new ser-
vices. It is the security policy’s task to decide if it is registered locally or system-
wide.

4.4.4 Global Names

As demanded by [F 115] subsystems sometimes have to synchronize their local ref-
erences (an example is given in Section 4.3.2). Because the ACEF does not know
the semantics of arguments of messages, local references cannot be remapped auto-
matically. Different approaches are possible:

1. Using global names which are independent of global references. Permitted
subsystems can use a GlobalNameService to map a local reference into a global
one which can be remapped into a valid local reference by the receiver.

2. A reserved parameter is used to invoke ACEFs to remap reference arguments.
Large overhead.

3. Global names are used as suggested by the first approach, but the sender
receives the global name from the ACEF of the appropriate subsystem or the
subsystem itself.

4. If this problem is only service-related the naming service can be used.

At the moment I cannot decide which solution would be the most flexible one,
because every approach has its advantages and disadvantages.

4.4.5 Increase Granularity of Access Control

The access control mechanism proposed so far provides thread-based granularity,
because Fiasco’s IPC mechanism is thread-based. Currently L4 tasks can execute
“only” 128 threads in parallel, therefore access control with a granularity of 128
separate sets of messages is possible within every address space. To be able to
enforce different access control policies, developers of subsystems have to separate
their messages into meaningful sets, implemented by different threads. Section 4.7
provides another approach which is more powerful but also slower. In order to
control also arguments of messages (e.g. to enforce information flow control or to
increase the granularity of access control), two different approaches could be used:

1. To enforce access control policies which also consider message arguments,
proxy-tasks can be used: The naming service does not return the address of
the service; instead it returns the address of a proxy-task which first enforces
the policy and then forwards the message.

2. To enforce access control policies which also consider message arguments, the
ACEF can be replaced by a new version which queries the ACDF every time
a message OCCurs.

Currently the proposed solution (without control of arguments) should suffice.

4.4.6 Alternative Approach to Control Access

The approach discussed in this section can be used to increase the granularity of
concepts suggested above or as an alternative model.

If services handle all messages by one thread, access can be restricted to a
defined set of messages by using proxy threads. The advantage of this approach is

4.4. PACKAGE: ACCESS CONTROL 61

that ADMINS can define the provided granularity themselves, but because another
thread is involved whenever two subsystems communicate, it may be slower. Figure
4.7 illustrates this approach. All role proxies have to be trusted components and

«Rol e» «Servi ce»
SecurityAdmin SubsystemManagement
«Subj ect »
User A
«Rol e» «Servi ce»
Admin NamingService
«Subj ect »
User B
«Rol e» «Servi ce»
User SecurityManagement
«Subj ect »
User C
«Rol e» «Servi_ce»
Anonymous Login

Figure 4.7: Alternative access control model using role proxies.

provide all messages assigned to the appropriate role. Because they are trusted
they can access all services without restrictions. The ACEF has to enforce that the
encapsulated subsystem can only access allowed roles. 128 roles should suffice within
a usual sized system, thus all roles can be provided as threads of one subsystem.

4.4.7 Hierarchical Access Control

This section proposes an approach to use security domains which refine or rede-
fine access control policies. It acts as an extension of the access control concepts
explained in Section 4.4.1 to 4.4.3 and simplifies controlling sets of subsystems (nec-
essary, e.g. to enforce that users cannot have two roles at the same time) and can
reduce overhead produced by suggested concepts.

Instead of encapsulating exactly one subsystem, F1Asco’s chief & clan concept
allows to control all subsystems of one user by one ACEF. It acts as a root of further
subsystems started by this user (similar to home directories used in many Unixes).
If users start new subsystems, they are executed as children of the user’s ACEF
and therefore automatically controlled by it. Users are free to use the same policy
and/or mechanisms within their own collection of subsystems, but if the global
security allows it, they can enforce their own access control policy or use no local
policy. To refine access from outside they can add ACLs to their ACEF; to control
their own subsystems (e.g. debugging, logging) they can replace the default ACDF
of their local subsystems by another one. Figure 4.8 illustrates the basic idea:

Two global services are controlled by their ACEF instances. Also the Client
0S8, which internally manages its own tasks and users and enforces its own access
control policy, is controlled by an ACEF. User A protects and controls his/her local
subsystems using separate ACEF instances, User B does not protect local subsystems
at all. Figure 4.9 describes this scenario with respect to ACDFs and ACLs.

This design makes it possible to use individual ACDFs for every user, because
only one ACDF has to be defined to control all subsystems of one user. Also changes
of user-dependent permissions get easier: To deny access to the display or printer,
only the user’s root subsystem’s ACDF has to be changed.

62 CHAPTER 4. DESIGN

Secur e Environnent

| service : || service | |Qient OS . User A : User B
; i 1 TN R IR

e | e ;

ﬂ i| service : ' | service :

1T Al L p— L ;

: 1] service [ii 1 [Service |

Figure 4.8: Hierarchical access control using clans & chiefs.

Secure Environment G obal Security Policy

:ACEF C :ACEF }--{ ACL
ocal security Policy

a:Service | b:Service | | :Client OS | | :ACEF | | :ACEF | | :ACEF I- | f:Service | | 9:App | | e:Service |

| c:Service | | d:Service | | d:App |

Figure 4.9: Task hierarchy of the scenario of Figure 4.8.

4.5. PACKAGE: RESOURCEMANAGEMENT 63

Generally speaking, the user’s root ACEF created by the ADMIN provides its en-
capsulated subsystems a virtual view of the whole system, because locally installed
subsystems cannot distinguish if they are installed globally or locally. So does the
main ACEF, which provides globally installed services a virtual system view, de-
pendent on their permissions. In my opinion this extention of the access control
mechanism provides a mechanism to unify single user (PDA) and multi user sys-
tem (PC). A single user system uses only one main ACEF and multi user systems
use sub-ACEFs to separate users. Because ACEFs provide a virtual one-user-system
view, subsystems can be used within both system types.

If subsystems need fast access to services (e.g. the naming service or a global
database), it is possible to install trusted proxy services within the same clan which
themselves query the global service to cache results. (see Figure 4.10).

:ACEF

:Service

:Subsystem
A

Figure 4.10: A caching service increases performance.

4.5 Package: ResourceManagement

This section contains refinements of the ResourceManagement package presented in
Section 3.4.4. The first subsection explains a basic idea how a virtual hardware layer
could be provided. Because implementation would use a lot of time, this approach
is not further considered by this work. The other subsections discuss the design of
subpackages of the “separated drivers” approach (Figure 3.4).

4.5.1 How to Provide a Virtual Hardware Layer?

One approach could use FIASCO’s exception handler concept:

Access to unsharable hardware resources (e.g. I/0O ports) is globally
disabled and trusted exception handlers are defined which are notified
by a processor trap signal if the Client OS tries to access the hardware.
If access is permitted (e.g. if no other subsystem has reserved this
port) the exception handler can carry out the command which raised
the exception and then return the control back to the Client OS. In all
other cases the exception handler can do a defined action (e.g., try to
allocate the port or abort the task).

This approach should be practicable because F1Asco allows to assign an exception
handler to every subsystem and the exception message contains the address of the
instruction which raises the exception. A detailed discussion of approaches how
virtual hardware could be provided can be found at the homepage of the freemware
project?.

3http://www.freemware.org

64

CHAPTER 4. DESIGN
4.5.2 Package: MemoryPager

MemoryPagers are accessed by subsystems implicitly if they produce page faults or
explicitly if they demand new memory pages. The MemoryPager replies by granting
a new page into the address space of the invoking subsystem or by an error message
(e.g. if no more memory is available). To fulfill [SR_100] all MemoryPagers have
to clear pages (using random numbers or NULL bytes) before they are granted to
a new subsystem.

The general way to provide more memory than physically available is to swap
out some pages to another storage (disk). As mentioned in Section 3.3.4 subsystems

have different demands on allocated pagers, listed below:

e providing integrity
e providing confidentiality

e providing integrity and confidentiality

e providing fast access

I assume that dynamic or static memory is secure, thus security-demands to memory
pagers only have to be considered if pages are swapped to another storage media.
Therefore all these requirements can be fulfilled if pages are not swapped out, but

this is not possible in all cases, e.g. if the system is shut down (see Section 4.5.2.1)
or if more pages are required than available.

On the other side, MemoryPagers
could be used which themselves use secure media like protected disks or memory

cards. Therefore the way how these requirements are fulfilled is an implementation

detail. This section suggests a set of five types of pagers which support integrity,
confidentiality and fast (locked in memory) pages (Figure 4.11).

:DiskPager

,—’R :MemoryPager
’
’
T B
r’ 1 A —’—:" 1
’¢ Ay .- ,’ 1
Phe :—’*— Phd ‘ 1
- .- A -, v
, - 1 A !
-, - ’ 4
-, .- 1 P ’ '
DA [P e !
-, - , N
o7 - 3 % !
z - d N 1
- P 1 ’ N
. . e ! . \ '
:IntegrityPager s ' \ !
PRe I'l \ 1
1 \~~ i . - N '
\ >2 a:ConfidentialityPager |* !
\ . ~S 1
-’ ~ AN
\ ’¢ \~~ §\ \ J
de ~ ~ \ 1
~ ~
) . - S o ~ \ 1
b:ConfidentialityPager ~e S . '
~ ~ AN 1
~
~
D S SS ~ \ 1
- ~
_____ Se S N 1
-~ ~o ~ AN
S ~a o So \\ \
_____ SO0
SR L
=~

:MainPager

Figure 4.11: Dependencies between different pagers.

The first pager is the MainPager which supports all types of pages and provides

a general interface to other subsystems. In general the MainPager uses the Mem-
oryPager which handles memory pages. If not enough memory pages are available
any more, the MainPager can swap out some page: To swap out pages without at-
tributes the DiskPager can be used which stores pages on a persistent storage. Pages

4.5. PACKAGE: RESOURCEMANAGEMENT 65

providing integrity are stored using the IntegrityPager, which hashes pages before
sending them to the DiskPager and uses memory pages to store the hash-values.
If the page is reloaded the hash-value is verified. To swap out pages providing
confidentiality the MainPager uses the ConfidentialityPager a which encrypts pages
before they are sent to the DiskPager. Pages providing integrity and confidentiality
are sent to another ConfidentialityPager b which itself sends the encrypted page to
an IntegrityPager. The ConfidentialityPagers use (locked) memory pages to store the
symmetric key used for encryption, the pager providing integrity can use them, e.g.
to store hash values.

It is important that on startup and shutdown memory pages internally used by
IntegrityPager and ConfidentialityPager are stored securely by using operations which
provide integrity and confidentiality. The master key given by the ADMIN on startup
(see Section 3.3.4) can then be used to encrypt the last page which contains the
encryption key. Also the behaviour of all pagers has to be adapted to the persistence
model. This topics are discussed in the next two subsections.

4.5.2.1 A Persistent System behaviour

This section presents a mechanism which provides global persistence and allows
frequent backups of dynamic memory. It is based on ideas of [26], [15], [17] and
[18].

One principle of this model is that the persistent storage (e.g. a harddisk) is
divided up into persistent pages (ppages) and that the processor directly acts on
these ppages. To understand the concept, dynamic memory can be ignored or
considered as cache of the ppages. If it is possible to enforce that the manipulation
of ppages is an atomic operation, we get a persistent system which can be switched
off at any time (at this point of abstraction restoring of processor and device states
is ignored).

A model of persistence which uses dynamic memory as cache has to ensure that

1. modified memory pages (mpages) are frequently written back to the persistent
storage to keep loss of data small if an error occurs.

2. the consistency of the data is not destroyed.

A simple solution to fulfill the second requirement would be to make storing of all
mpages to ppages an atomic operation, as it is done e.g. by BIOS functions of some
notebooks which store all memory pages to a reserved disk partition (suspend-
to-disk). Because it takes a long time to store for example 128 MB to a disk it
is unreasonable to do this frequently as demanded by the first requirement, also
interrupting the system is not possible, because users will not accept this behaviour
and some devices like serial ports and ethernet cards have to be read frequently to
prevent buffer overflows.

As a first step to decrease time of system inactivity, the atomic backup operation
can copy the content of modified mpages to other (free) mpages. Copying these
mpages to ppages can then be done by a background process. If all modified pages
have been stored the next backup can be made. Thus the frequency of backups
only depends on the priority of the backup process and the speed of the persistent
storage.

But also copying 128 MB of RAM may interrupt the system for a (too) long
time interval. The atomic mpage copy operation can be optimized by using virtual
pages and a page-wise copy-on-write mechanism: At the beginning of the backup
procedure the mpage is copied by creating a new virtual page which points to the
same mpage which has to be marked read-only. Only if the mpage is modified by a
write access, which occurs slower and one after the other, it is physically copied to

66 CHAPTER 4. DESIGN

a) b) B

e — e

[feeel [[[] [faeel | [[] [[faecfoee] | [|

|:| Physical Memory - Virtual Memory (read write) |:| Virtual Memory (read only)

Figure 4.12: Address space (a) before and (b) after copy-on-write, and (c) after
overwriting the original mpage.

another mpage. Figure 4.12 illustrates the behaviour of a copy-on-write mechanism.
Copying a virtual page is identical to copying a reference to the mpage, thus the
atomic part of the backup operation only has to copy references of all mpages. This
approach can be optimized if the backup operation copies only references of mpages
which have been modified since the last backup operation. Most processors have a
pagetable indicator which is automatically updated if a page is modified.

To protect the system consistency against errors while writing the mpages to
the persistent storage two regions of ppages should be used which are alternately
written. Figure 4.13 outlines the complete set of required virtual, physical and
persistent pages.

P P

= virtual page table entries Y Ppages which .
pag \ store the next latest consistent
AN persistent backup

— physical page table entries backup

fffffff = read only page table entries - virtual memory |:| physical memory

Figure 4.13: Required mpages and ppages to build a persistent system.

In order to keep the system state consistent it is important to store the pagetable
of a consistent state together with its pages. A stored pagetable is valid until the
next pagetable, which contains the next consistent state, has been stored completely
and marked valid. To be able to reload the latest consistent state a protocol has to
be used which guarantees that the latest valid pagetable (and referenced pages) can
be found and loaded. It is not necessary to reload all mpages to restore the latest
consistent state. Only the pagetable itself has to be loaded* and all mpages have
to be marked as invalid. Then the system itself loads the pages one after the other
if page-faults occur. Figure 4.14 describes the control structure of the operations of
the load_page() operation after a page fault and the backup() operation. If the
Client OS uses MemoryPagers of the secure environment, it should be possible to
store its state, too.

To fulfill requirements of subsystems which need to know if their internal state
has been stored (e.g. to guarantee atomic operations) the system should send a

4In general a pagetable is divided into hierarchically-ordered page-aligned subpages, therefore
only the root pagetable has to be loaded into the memory.

4.5. PACKAGE: RESOURCEMANAGEMENT 67

load new ppage backup operation

l]
yes no

copyvpage | | m = m e e e = = m - -
reference.
yes unmodified no L

1
1
mpage? 1 _yes mpage list no
1 empty?
1
1
1
1 mpage.
1
1
1
1
1
1

modified vpage no

available?

add mpage to
list.

Mark vpage of

unmodified mpage
as invalid.

store next

mark mpage
as unmodified.

m— gtomic operation
== == background operation

load ppage

Figure 4.14: Program control structures of the load_page() and backup() opera-
tion.

message to all subsystems if a backup operation has finished. An interface which
allows subsystems to invoke the system to start the next backup allows the adminis-
trator to select a backup interval between permanent (started after the last backup)
and never (only subsystems invoke the system).

4.5.2.2 2nd Approach to Provide Persistent Memory

Although Section 4.5.2.1 introduced a design to provide persistence, this section
proposes another, simpler approach.

As explained in Section 4.2 the F1ASCO p-kernel provides an abstraction of mem-
ory regions, called address spaces. The granularity of address spaces is processor-
page aligned, therefore dynamic memory (heap memory) cannot be provided by
the microkernel. Because C and C++ developers expect to be able to use dynamic
memory, this has to be provided by additional functions. Section 4.12.1 suggests
a simple dynamic memory model, but to explain the persistency model I have to
anticipate some results here: The dynamic memory model manages small memory
regions and requests new pages from the MemoryPager if no more memory is locally
available. If the system would contain another MemoryPager (or pages with an-
other attribute, see Section 4.5.2) providing persistent memory pages the dynamic
memory manager can be extended in such a way that it provides additional func-
tions to manage also persistent memory regions which have to be stored/loaded on
shutdown/startup as described in Section 4.5.2.

The advantages of this approach are that implementation is easy, because only a
new memory attribute is required, and that specific regions of memory can be stored
to a persistent storage explicitely. Disadvantages are that developers have to decide
themselves whether objects have to be persistent or not, and that management of
dynamic memory structures (e.g. trees) produces additional overhead. Potential
sources of errors are mixtures of persistent and transient objects (e.g. a transient
object has to become persistent if it is appended to a persistent data structure).

68 CHAPTER 4. DESIGN

4.5.3 Package: PortManager

The current version of FIASCO and its resource manager does not provide mecha-
nisms to limit I/O port access. Therefore a new interface called PortManager has
to be defined to handle access to I/O ports. To be compatible to the behaviour
of existing servers, the implementation should grab all existing ports during its
initializing phase and handle them on a first-come first-serve basis. Because x86
processors support highly granulated access control of I/O ports, workarounds to
increase the granularity are not required:

The Intel 80x86 processor family since 1386 supports four different privilege
levels, also known as rings of protection ([3], [22], [11]). Every task runs in one
privilege level, stored in the CPL (Current Privilege Level) of the task’s EFLAGS
register. It is possible to specify privilege levels (Input/Output Privilege Level)
which have permission to access the I/O ports by setting the IOPL flag of the
processor. This means, it is possible to forbid I/O access completely, or to create
privileged tasks, which are allowed to access I/O ports in principle. If unprivileged
tasks access I/O ports, an exception is raised. If privileged tasks access I/O ports,
the I/O Permission Bit Map (IOPBM) inside the Task State Segment (TSS) is
checked to see if access to the selected port is allowed. This makes it possible to
control I/O port access to every port separately.

Table 4.1 describes two required messages the PortManager has to provide, one
message to reserve port access and one message to release ports. The first parameter

| Message | parl(16 bits) | par2 (16 bits) | result |
reservePort | first_port nr | nr_of ports | ok/error
releasePort | first port nr | nr_ of ports void

Table 4.1: Two new IPC Messages used by the RMGR to assign/release I/O port
access to other tasks.

contains the port number, the second parameter contains the number of ports to
be reserved. This makes it possible to reserve a continuous range of ports (devices
often need more than one port). Both parameters have a length of 16 (65536 I/0O
ports) bits, thus they fit into one 32 bit register. The PortManager interface can
be implemented by the existing resource manager RMGR of the F1AscO package
or by any a separate service. Because granting/removing of permissions to access
I/O ports requires modifications of the IOPBM and thus of the task’s TSSs, two
different approaches are possible:

1. The F1ASCcO p-kernel is the only instance which is allowed to modify a task’s
TSS register and therefore change the I/O port access rights and the Port-
Manager reserves all ports during initialization. This approach is also used
by FIASCO to grant permissions to start new tasks, but I fear it requires to
modify the microkernel.

2. Alternatively we can leave the microkernel untouched and move the right to
change the task’s TSS register to the PortManager. This requires the PortMan-
ager implementation to be a higher privileged task. This is not compatible to
the microkernel philosophy which demands all servers to be user-level tasks.

I prefer the first solution which corresponds to the F1Asco and microkernel philos-
ophy, but because both approaches change only the interface between PortManager
and p-kernel, this can be changed later. Although F1Asco does currently not sup-
port controlling of port access at all, later prototypes should contain a PortManager
to prevent changes of other components if it is supported.

4.5. PACKAGE: RESOURCEMANAGEMENT 69

4.5.4 Package: DisplayManager

As explained in Section 3.4.8.1 the design of the DisplayManager depends on the size
of the display. A display is “small” if usually only one application is shown (PDAs),
thus it is defined to be “large” if more than one application can be shown at the
same time (PCs). Section 4.5.4.1 contains a short discussion on small displays and
the following sections suggest a design for big displays. I think that a lot of design
decisions of the “Big Display” approach can also be used by the “Small Display”
approach.

4.5.4.1 Small Displays (PDAs)

General properties of small displays are: Usually only one application uses the whole
display at the same time, therefore applications expect a fixed display size. Because
the reserved region reduces the usable size of the display and applications should not
(or cannot) be changed, a trusted component DisplayManager has to control access
to the display hardware, write to the reserved region and provide a virtual display to
applications which has the same resolution as the hardware display. The interface
of the virtual display depends on the used Client OS: If it cannot be modified and
a virtual hardware layer (see Section 4.5.1) is used the DisplayManager’s interface
should be similar to the interface of the hardware to make redirection of calls fast.
If the Client OS can be modified, the DisplayManager’s interface should be similar
to the Client OS’s interface. However, a more abstract interface produces faster
output, because calls between different layers occur less frequently.

To be able to see the whole application, the reserved region should contain
two buttons to scroll the application’s window to the top or bottom. It should be
considered that also input data (mouse or pen positions) have to be adapted to the
relative position of the region of the window.

4.5.4.2 Large Displays (PCs)

On large displays in general more than one application is visible at the same time
and they do not expect a fixed display size, because virtual displays (windows) are
used. The most common approach to encapsulate display hardware in Unix sys-
tems is the X Windows system®. The heart of the X Windows system consists of a
program called XServer which runs on a machine with a display, keyboard and a
mouse. It contains device drivers and provides a common interface to all other ap-
plication programs called XClient. The clients can be running on the same machine
as the XServer or on another machine connected to the XServer. The XClients
communicate to the XServer via a protocol language which is common across ma-
chine types. To simplify the communication between XClients and XServer the
XLib library provides a large set of subroutines.

Many clients can simultaneously use the same XServer, because the server pro-
vides a virtual screen (window) to every client. One client which should always run
is the windowmanager, which draws the window borders and makes it possible e.g.
to resize and move windows. The X Window system does not provide high-level sup-
port like buttons, menus, scroll-bars etc.; to use them additional GUIT toolkits like
Motif®, Qt” or GTK® have to be used. Figure 4.15 outlines the interfaces between
XClient and the video hardware.

If both the secure environment and the Client OS share the same display hard-
ware using the X Windows system we get two (maybe virtual) protocol stacks which

Shttp://www.x.org
Shttp://www.motif.com
Thttp://www.troll.no
8http://www.gtk.org

70 CHAPTER 4. DESIGN

X client Aclicht
GUI toolkit
Xlib Xiib

X Protocol

Figure 4.15: Components of the X Windows System.

have to share the same hardware driver (red box), as outlined in Figure 4.16. In
general I prefer to use existing interfaces, thus the three colored lines show the
possible interfaces where different implementations can be put together®.

If the functionality below the blue line shall be moved into the secure environ-
ment the client OS XLib has to be replaced by a new XLib stub which communicates
with the secure environment. This is possible because the XLib contains a fixed
interface, but statically linked XClients have to be rebuilt.

Using the X protocol layer (green line) to separate untrusted and trusted com-
ponents may be better, because it is a network protocol which provides redirection.
Redirecting output to the XServer of the secure environment would leave Client OS
applications untouched. If it is too difficult to establish a network connection be-
tween SE and Client OS, a client XServer stub could be used to forward X protocol
messages.

The third approach uses a Client OS XServer which acts as a client of the
secure environment XServer. Thereby all Client OS windows are summarized in
one XWindow of the secure environment. This makes it necessary to use two
windowmanagers: One for the Client OS and one for the SE.

I prefer the second solution because it seems to be the most flexible one and
Client OS applications can be left untouched, but currently I cannot decide if it is
possible to implement it.

4.6 Package: SubsystemAuthentication

If the secure environment provides an abstraction of the display hardware, as de-
scribed in Section 4.5.4.2, two ways to inform users about subsystem trust are
possible:

1. A reserved region of the XServer can be used to show the trust level of the
application which currently gets user input (has the focus).

2. A trusted windowmanager implementation can show the trust level using a
reserved region of the window (e.g. the headline).

The second approach has the advantage that it shows trust levels of all applica-
tions and that the whole display resolution can be used. The disadvantage is that

9Tt is meaningless to put the GUI toolkits together, because too many toolkits with different
interfaces exist and they have to fullfil different demands. The client OS toolkits have to be user
friendly, the toolkit of the Secure Environment has to be secure.

4.7. PACKAGE: TRUSTEDGUI 71

Client Operating System Secure Environment
X client X client
GUI toolkit GUI toolkit
Xlib Xlib

X Protocol X Protocol

line

1 red line

Figure 4.16: The three colored lines describe possible interfaces between untrusted
and trusted components.

a trusted windowmanager implementation is necessary. On small displays both
approaches are equal because only one application window is visible at the same
time.

4.7 Package: TrustedGUI

Possible approaches how to provide a GUI toolkit were described in Section 3.4.8.2.
The F1asco microkernel itself currently does not provide a shared library concept,
thus the second approach cannot be used. I decided to use the first one (static
library) because of the following reasons:

Separation of application and GUT toolkit is not necessary, because the display
hardware is protected by the DisplayManager. Also waste of memory and complexity
of evaluation are not primary problems, because they are obsolete as soon as shared
libraries or similar concepts are available.

4.8 Package: CommunicationPath

To establish a virtual network connection the Client OS has to be extended by a
virtual network device and the definition of the router of the secure environment
has to be refined. These topics are discussed in the next two subsections.

4.8.1 Router

As decided in Section 3.4.9 the Router routes all network packets between local
(software and hardware) devices. To make the implementation fast and efficient,
the packet size is page-aligned!?. This makes it possible to send/receive packets via
page mappings. Figure 4.17 outlines the interface of the Router subsystem. In order

10This is possible because the TP protocol is designed to use different underlying packet sizes
while transferring an IP packet. If a packet is transmitted from a larger size to a smaller size, IP
packets are divided into subpackets.

72 CHAPTER 4. DESIGN

to simplify extensions device proxies are used which forward packets to registered
protocol proxies (TCP, UDP, IPX) which themselves forward them to registered
services (ping, telnet, ftp). Keep in mind that these are only interface definitions
which provide high flexibility, implementations only have to provide the Device
interface (e.g., the LINUX kernel only has to implement the Device interface because
it does all other tasks by its own TCP/IP stack). But if certified implementations
of ProtocolManager and ServiceManager exist, providing new Services (for the secure
environment) becomes very easy.

4.8.2 Virtual Network Device

This section explains how the LINUX 2.2 kernel can be extended by a virtual network
device (see Figure 3.13). Most information about LINUX network device drivers are
extracted from [39] and [12].

A network interface represents a thing which sends and receives data packets
and has to be distinguished from network drivers which access network adapters.
Therefore a network interface can be a hardware device like an ethernet card or
a software device like the loopback device!!, in any case it represents a unique IP
number.

LINUX network drivers are, in contrast to other Unixes, neither block nor charac-
ter devices. Instead they are directly connected to kernel structures. Each device is
created by filling in a protocol-independent struct device and registering them via
a kernel function register_netdev() call. Every device has a unique name which
traditionally indicates its type, thus ethernet devices are named “eth(”, “eth1”, etc.
A device driver which receives new data packets in a device-type dependent way
passes them up to the kernel protocol layer using the kernel function netif_rx().
If the kernel wants a device to send packets it invokes the hard_start_xmit ()
function of the device driver.

The virtual network device has to do three tasks to adapt it to the Router (Figure
4.17):

[Communi cat i onPat h

«Devi ceManager »
Router «interface» T nterface» nterface»
Device Protocol Service
i eg) St or bovi va aud S5) [TP NeTvor kATdr ess
+r out e(: Page) #r ecei ve_packet (: Page)

#recei ve_packet (: Page) #r ecei ve_packet (: Page)

1 Servi ce

'
ServiceManager

+regi ster Servi ce(: Service) P
+unr egi st er Ser vi ce(: Servi ce) “;‘;n'ep” ‘TSCFMT"E”

#send_packet (: Page;
<UDP> T CVP»
FTP Ping

[

«Pr ot ocol Manager »
VirtualNetworkDevice

I
ProtocolManager

1 recei ve_packet (: Page)
JAN

T ()
+star t
+hard_start_xnit

recei ve_packet (: Page)

T egi ster Prot ocol (Prot ocol)
+unr egi st er Prot ocol (: Prot ocol) Protocol
#r ecei ve_packet (: Page)
#send_packet (: Page)

Figure 4.17: Components of the CommunicationPath package.

1. Register with IP number to the Router. The device’s network address
is set by network administration tools (ifconfig) on initialization, but the device
is opened (activated) by another command (“ifconfig <> up”). Therefore the

11 A network device used by many Unix’es to test the TCP/IP stack and which provides local
network functions without network adapters. Usually the loopback device (“localhost”) uses the
IP address 127.x.x.X.

4.9. PACKAGE: SUBSYSTEMMANAGEMENT 73

virtual network device should register the thread which receives incoming messages
when the device is opened and unregister it when the device is closed.

2. Forward packets received from the LINUX kernel to the Router. The
device has to provide a hard_start_xmit() function which can be invoked by the
LiNUX kernel, which sends the received packet via u-kernel IPC to the router.

8. Forward packets received from the Router to the LINUX kernel.
The receiver thread which receives network packets forwards them via netif_rx()
kernel call to Linux’ TCP/IP stack.

The sequence diagram outlined by Figure 4.18 shows the control structure if
LINUX pings a device of the secure environment.

«Device»

VirtualNetworkDevice «Device» «ServiceManager» «Service»
T Router ProtocolManager ICMP Ping

hard_start_xmit() | |
Pi n 9 route()

receive_packet()
receive_packet()
receive_packet()

send_packet()

send_packet()

route()

netif_rx()

Pong

Figure 4.18: Control structure of a ping command invoked by LINUX.

4.9 Package: SubsystemManagement

The package SubsystemManagement provides components to grant/manage permis-
sions to start new subsystems (tasks) and related classes which are necessary to
install/update/delete subsystems. The class Loader has been removed from this
package and separated into the package Loader, because it can also be used for
other tasks than loading new subsystems.

4.9.1 TaskManager

This service acts as a facade to all other components of this section, because it
provides a simple interface to start/halt tasks (external functions [F 40] and [F 45]).
Figure 4.19 illustrates available methods provided by this service. A new subsystem
can be started by defining the destination where the content and optionally the
content-certificates can be found. The TaskManager invokes the Loader to load the
new software and a content-description provided by the content provider. Among
other things (see Section 4.9.1.1) the content-description contains a hash value of
the content and a signature of the content-provider. Both have to be tested by
the TaskManager. The content description also contains a list of related content-
certificates which have to be loaded. Then the DerivationService is invoked to derive
the permissions of the new content. Next the TaskManager invokes the Installer to
parse the content and extract starting points. At least it updates the naming service
and dependency database.

74 CHAPTER 4. DESIGN

.
1
.

........

TaskManager

+start(destination:String,certificates:Strings): Threadld
+hal t (t ask: Thr eadl d)

DerivationService

Loader::Loader

Installer

ResourceManager::SubsystemManager

Figure 4.19: Design of the class TaskManager.

F1Asco does not support starting of subsystems within a clan of another sub-
system, only granting the right to start a specific task is supported. Thus to control
who can start new tasks the security policy has to control these rights. If users have
permission to start new subsystems themselves the security-policy cannot control
which subsystem is installed (e.g. enforce that ACEFs are used). Therefore the
permission to access the TaskManager has to be restricted by the security-policy to
the user’s ACEF. Four different scenarios should be considered:

1. Users have permission to start new subsystems in their clan without restric-
tions.

2. The security policy has to control which subsystems are installed by users and
an ACEF has to be used to control every subsystem.

3. Installed subsystems may want to create their own subtasks.

4. If the security policy allowes users to install subsystems which have permis-
sion to start subtasks on their own, users are able to install every subsystem
whithin their clan, because they could have installed a TaskManager.

I am not sure, but I fear that it increases the security of the system if users can
install any subsystem, even if they are controlled by the user’s ACEF. If this is
true, it should be possible for the security policy to control the right to start new
subsystems. One approach could be to restrict the right to start new tasks to ACEF
instances. Nearly all requirements of the scenarios mentioned above can be fulfilled:

e To permit users to start any subsystem within their clan the user’s ACEF does
not have to restrict rights to start new subsystems.

e In order to control which subsystems are installed the ACEF can check which
subsystem the user wants to install.

e To permit subsystems to start tasks on their own, the ACEF can grant the
right to start a new task to a child task. This is only useful if the ACEF checks
which subsystems are installed.

This approach seems to be flexible enough to fulfill requirements of all security
policies.

4.9. PACKAGE: SUBSYSTEMMANAGEMENT 75

4.9.1.1 Content-description

To make installation /updates of software more comfortable and less error prone the
content provider has to provide a content-description which contains all necessary
information for the TaskManager to install new content and to check if the system
provides all required services. The content-description shall at least contain the
contents summarized by Figure 4.20. Later versions of the content-description could

«Version 0.1»
ContentDescription

tversion: Version = 0.1
+contentld: Digest

+cont ent Description: String
+def aul t Location: String
+requi redServi ces: Services
+provi der Si gnature: Signature

Figure 4.20: Contents of the content description.

provide suggestions how roles should be assigned to provided methods or assign
security-levels to provided methods.

4.9.2 Package: Installer

The installer provides function [F 52] which parses linker-format dependent object-
files to start them if they are valid executables. The proxy pattern is used to make
management of new linker formats easier (see Figure 4.21). This design assumes

I nstal |l er

«Rol'e, Version 0.1» «Version 0.1»

InstallerManagement o Format

+r egi st er For mat (: For mat , header:) . PULI i T T T
+unr egi st er Prot ocol (header :) Tzt Hinstall(oby e*ct :fages) : Unknown

L
«Version 0.1» hi des »
InstallerManager proxy

1
1

1

1

1

1

- - !
install (object: Pages): Unknown {Instal | er Managenent } 1
regi st er For mat (: For mat, protocol :) |
unr egi st er For mat (header:) For mat 1
- add(: For mat , header:) —(—(5 ! 1
-renove(header:) I
-find(header:): Format {
1

1

1

0

-extract(:String): String | ________ inconplete} _
1 1
1 1
{ or der ed} I 1
Li st "
F((()rlnsm)is [ELF] [a.out] [Multiboot |
+ For mat : ! t] I |

+header :

Figure 4.21: Design of the Installer package.

that linker formats can be distinguished by some kind of headers which is correct
for ELF, a.out and multiboot headers but perhaps this has to be changed. The
return value of the install() method is currently unknown.

4.9.3 Package: DerivationService

The DerivationService helps users to derive permissions of subsystems to be installed
and this section suggests a sample implementation.

If new software is installed two opposed interests have to be solved: The USER or
ADMIN who installs the software wants to grant the new software as few permissions

76 CHAPTER 4. DESIGN

as possible to keep the possibility of security holes small. In contrast the software
to be installed needs some services to perform actions.

The services needed by software components are listed by content-descriptions
presented in Section 4.9.1.1. Thus the DerivationService’s task is to derive the small-
est set of permissions which are required to access these services and to decide if
these permissions can be granted to the new software component.

To perform the first task the DerivationService needs access to the NamingService
and the access control database. The decision if derived permissions can be granted
to the component depends on the trust in the correctness of the implementation and
depends on the security-policy and user-defined values (Section 3.2.5 lists some pos-
sible criteria). I decided to use content-certificates (presented in Section 4.9.3.1) to
derive the level of trust. Users have to define trust into content-certificate providers,
and rules how many certificates are necessary to match a specific trust-level. Then
security-policies decide if the derived trust level suffices to grant permissions to the
software. This is very similar to trust levels of public key infrastructures provided
by OpenPGP certificates [2].

It is not necessary to be able to enforce global installation restrictions locally,
to ensure, e.g., that only subsystems which match requirements defined by the
SECURITY-ADMIN can be installed. Instead, the permission to start new subsystems,
provided by the interface SubsystemManager of the ResourceManagement package,
can be limited to a trusted subsystem (e.g. a global TaskManager). Then all users
are only able to install subsystems if they have permissions to access the global
TaskManager and the global security policy is enforced. Thus the decision whether
global installation restrictions are enforced, when users install applications locally,
becomes security-policy dependent.

4.9.3.1 Content-certificate

Content-certificates provided by trusted parties (e.g. the content provider or an
independent instance) are used to derive the trust level as explained, e.g., in [23].
The certificate has to unequivocally identify the content description (e.g. using a
hash function) and the provider of the certificate has to sign it to ensure integrity.
The SECURITY-ADMIN has to define rules which describe how the DerivationService
has to deduce evaluation results of the content-certificate provider into the local
security policy. In order to test signatures of content-certificates a public key in-
frastructure is required. If the content is provided by source code the certificate
should additionally contain a list of compatible compilers to be used. Figure 4.22
illustrates required contents of content-certificates.

«Ver si on 0_._1»
ContentCertificate
+version: Version = 0.1

+cont ent Descri ptionld: Digest
+eval uati onResul t: Eval uati onResult

+def aul t Cont ent Descri ptionLocation: String
+certificateProviderinfo: String
+certificateProviderSignature: Signature

Figure 4.22: Contents of the content-certificate.

The attribute evaluationResult describes the trustlevel (or similar contents)
the certificate provider suggests using this certificate. The transformation into
access permissions is a task of the security policy.

4.9.4 Conclusion

Figure 4.9 outlines the complete design model of the SubsystemManagement package.

4.10. PACKAGE: LOADER 7

Subsyst emvanagenent
I
e +TaskManager
{ Facade #For mat
TaskManager «Inpor t ed»
+start(destination:String,certificates:Strings): Threadld uses» Loader::Loader
+hal t (t ask: Thread! d)
uses »
I nstal | er DerivationService
+derivePernissions(:Certificates): Roles
+For mat
#For mat Manager
«l npor t ed»
ResourceManager::SubsystemManager
«Version 0.1» «Version 0.1»
ContentDescription ContentCertificate
+version: Version = 0.1 +version: Version = 0.1
+content|d: Digest +cont ent Descri ptionld: Digest
+cont ent Descri ption: String +eval uati onResul t: Eval uationResul t
+def aul t Location: String +def aul t Cont ent Descri ptionLocation: String
+requi r edSer vi ces: Services +certificateProviderinfo: String
+provi der Si gnature: Signature +certificateProviderSignature: Signature

Figure 4.23: Overview of components of the SubsystemManagement package.

4.10 Package: Loader

The Loader provides the requested function [F 35] and has to consider that different
protocols exists which can be modified and/or provided by different providers. To
use only one interface to access different protocols and to make installation and
deletion of single protocols easier the proxy pattern (presented in Section 4.3.2)
is used. To define the destination address of the content to be loaded a String
type is used and the protocol has to be defined explicitly by these address, e.g.
“http://www.linux.org”’'?. The manager internally uses an ordered list of proto-
cols to manage protocol implementations. The return value of the 1oad () operation
are memory pages allocated by Loader implementations. Figure 4.24 outlines con-
tents of this package.

Figure 4.25 outlines two sequence diagrams which illustrate dynamic behaviour
of manager and protocols if a) a Loader implementation adds itself to a LoaderMan-
ager and b) an external subject invokes the LoaderManager to load new contents.
Multi-threaded behaviour of the manager and protocols is possible but ignored here
to keep the diagrams simple.

4.11 Package: Random

Classes related to random bit generators have been extracted into the package
Random. It contains only one public instance of the class RandomManager which
is accessible by other components and provides function [F 20] (see Figure 4.26).
The design of this package is similar to the Proxy design explained above, but
instead of delegating messages to a random Source, it combines data of different
implementations using an xor () function. The operation random() returns Pages
which can easily be mapped into another address space. The class RandomManager
caches a predefined set of random pages for efficiency. To increase the user’s trust

127,ater versions can be extended in that way that, if no protocol is selected explicitly, the
LoadingManager asks every protocol if it is responsible.

78

Loader

«Rol e, Version 0.1»

Manager

CHAPTER 4. DESIGN

—

«Rol e,

Version 0.1»
Loader

+regi st er Protocol (: Protocol, protocol :)
+unr egi st er Prot ocol (protocol :)

«Version 0.1»
LoaderManager

proxy

| oad(destination: String): Pages
regi sterProtocol (: Protocol, protocol :)
unr egi st er Prot ocol (protocol :)
-add(: Protocol,: String)
-renove(:Strin
-find(protocol 1):

Pr ot ocol
-extract (:String): i

String

Mal
{Manager}

{Lgader)

{ordered}
«Li st»
Loaders

+: Protocol
+pr ot ocol :

String

N *{+T oad(destinati on: String): Pages

i nconpl et e}

R L gt il S

I
+Loader
+Loader Manager
#Manager

HTTP

protocol: = "http"

protocol: = "ftp"

protocol: = "nfs"

Figure 4.24: Design model of the package Loader.

HTTP:Loader

I |
R

registerProtocol()

[_

LoaderManager

add()

LoaderManager
load() []

extract()

load()

Figure 4.25: Sequence diagrams if a) a new protocol is added and b) the Loader-
Manager is invoked to load new data.

4.12. PACKAGE: UTILITIES 79

into the correctness of created random bytes, the class Keyboard creates random
pages from keystrokes or similar user-dependent input and implements [F 25].

Random |
+Randomivanager
«Rol e, Interface» ;sgﬁr cer
Manager «Role, Interface» i Keygggr q
- Source - Har dwar e
+r egi st er Sour ce(: Source)
+unr egi st er Sour ce(: Sour ce) +randon(): Page
e e e e e e e e e e - - - 1 1
\ {inconpl et e}
! conbi nes » B - '
! proxy 1 |
! il I i
! 1
hRaIn_dc:mPManager «Trusted Conponent » 1
-cache: [|ist<Page>
-sources: |ist<Source> Keyboard Hardware
regi sterSource(: Source) randon(): Page randon(): Page
unr egi st er Sour ce(: Sour ce)
randon(): Page
-xor(:1list<Page>): Page
{ Random\anager } { Sour ce}

Figure 4.26: Design of the Random package.

If the RandomManager implementation is correct and at least one Source provides
strong random numbers, the output produces strong random numbers. Therefore
users are free to create their own RandomManager instance which uses a system-wide
RandomManager and further user-dependent Sources (Figure 4.27).

:Keyboard
Sour ce
O

:Hardware

:RandomManager

User - defi ned extensions ﬁ

Figure 4.27: Scenario if a user extends the system-wide random service by his/her
own Source.

4.12 Package: Utilities

This package describes designs of classes which build a framework to help developers
developing secure applications and services. Implementations of this package are
not security-critical, because they are running within protected address spaces, but
errors can of course decrease the reliability of services which use these classes.

4.12.1 Class: Heap

The class Heap hides implementation details of dynamic memory allocation which
has to be provided by additional functions.

80 CHAPTER 4. DESIGN

If the p-kernel executes a new thread the program data is mapped read-only into
the task’s address space and a pointer to the stack is defined. Automatic memory
is stored on the stack by writing to the stack’s address. If the thread tries to write
to an address which does not contain a physical page, a page fault message is sent
to the thread’s page fault handler which can request a new page and map it into
the thread’s address space.

«Ut i~| ity»
Heap

+al | ocMenory(:size_t,:Attribute): void*
+f reeMenory(:void*): void

Figure 4.28: Design of the class Heap.

Because dynamic memory has to be valid until it is deleted explicitely it cannot
be stored on the stack. It is the Heap class’ task to manage allocation and deletion
of dynamic memory regions and to ensure that neither dynamic memory and stack
memory, nor two dynamic memory regions overlap. To guarantee this requirement
it should only be possible to instantiate only one Heap within one address space,
therefore it is designed using a Singleton pattern!?® (Figure 4.28).

A more complex environment providing dataspaces and dynamic memory with
different attributes can be found in [34]. I did not use this implementation because
the current version did not compile.

4.12.2 C(Class: ThreadManager

The class ThreadManager helps creating/deleting/looking for threads within an ad-
dress space. It is used by the class Thread, presented in subsection 4.12.4.

4.12.3 Class: Pager

This class acts as the default pager of all threads within one address space. It is
used to be able to debug page faults of other threads and to be able to use virtual
pages, because it maps any free page to the faulting address.

4.12.4 C(Class: Thread

The class Thread hides implementation details of the creation of threads and pro-
vides some basic functions which should be available to all applications. Similar
to the Java class Thread of the java.lang package a new class of threads can be
defined by overwriting the abstract run() method. The new thread is started by
invoking the start () method. Methods or data which should only be instantiated
once within an address space can be defined as static members of the class Thread.
Example data members are the class ThreadManager (Section 4.12.2), Heap (Section
4.12.1) and Pager (Section 4.12.3).

131f the class Thread is used this is enforced because the Heap is a static data member of the
class Thread.

4.13. OOD MODEL

4.13 OOD Model

Thread
-heap: Heap

-manager: Thr eadManager
- pager: Pager

+start ()

+id(): Threadld
+state(): State
+run()

+hal t ()

Figure 4.29: Methods of the class Thread.

81

Figure 4.31 summarizes the complete OOD model. The packages KeyManagement
and Crypto are taken from Chapter 3.

Figure 4.30 illustrates layers and their components of the design model. The dif-
ference between this model and the model proposed in Section 3.15 is an additional
layer “Subsystem Framework” between red line and secure platform. It provides
utility components to be used by all subsystems.

Client Secure Viewer Stock
(O] Email trading
Applications
; : Virtual Access
Corr;rr;tﬁmc. gleram‘mg Hardware/ S(;rrypto Control Trusted
a vice Drivers vices Policy Gul
Application Framework (Services)
Access Control Resource Subsystem
M echanism Manager Management
Secure Platform
Thread "
Thread Heap Pager Manager Persistence

Subsystem Framework (Utilities)

Microkernel

Hardware

[] Given components

[] To be developed

Figure 4.30: Layers of the design model.

Green
Line

Yellow
Line

Red
Line

82

CHAPTER 4. DESIGN

83

OOD MODEL

4.13.

<SR Bai]

1)30 1195 115 63 Jun+]
(Bu 111 99 11155)33 1185 13 15 163 12}

(6u 1215 95 1A 185 Jpu 1 17

{ooungs) {sebruguopuRy }
101 gy <@ o> —
91005 :)o:
a [Cebed Quopues] [__sBed (uopuei] Rt |

[omnpren] progion >0] ,

«wauoduo) paisn iy B s U S AN G U U '
T

Buiiis
1090103

. o]
emeees G @isi} il
o—! (:10%0
' (oo sabeq " (Bu 1135 Mo 116 1156p Jpeo |
Y § Axo JebeuepIapeo
(33 1m05 1133 1ho5 13 15 16 1un7] AT
\\\\\\\\\\\\\\\\\\\\ Py (939n03 1395 Inos 1915 153 1
o
" eBoua Jobeueny
TJPoBusIORo 1 jod7 neu «ove 1w "3 > .
(0= : Jpa®)41V 195+] _ (71090101d) 09010 1
(b 1pea 1y mou 'p 1pea 1uy P (319535 jauaBUE>H = - e ST] (10901014 1030
P Tobeueny L
19BeUBNAZOY wap' | b Topeon * Tabeueny
Py]

10 U0 1513 "2 (o «1°0 uoiSIaN ‘B ja»

Tapeon|

<sabeuan (av

100q_:(:19 1293 Jaynuapliasn

SHOv_s jpoe |
JabeueN3aOV

21801J11182911ANd

5n10ub |5
Bu
buis uo

SN 1BUD 1§20 1eUB 15 19p 110107

1530 0 _:p| 1U2 1u0d+|
10 = UolsiBn :uoisians 10 = UOISIBA (U0 1S i

CRL
&l

ERLERVERRCOL) Swar

1)

31BIY1IBDIUBIU0D uonduosaqiuaiuod
«T°0 ud s Jan> €10 uo1s IoN>

21801J1118031eAlId

[ETEETe

It 7 SaTOLA U T
1sab g (AJeu g -)yseus PaL ,mh :m“.m @101 A seu 1g#|

JENEINTR)

Jabeugy jau 1044
18U J04+

[seiod (sameat

= JSU0 155 Wisden 17api]

Tp 1on K Jauanaa i 7]

V5215 :jAiauanoo | e+

[SoInBSUOEAIRa |

7|; Sosn
(pipea Iyl yse]

PIpeaiul :(sBU1i1S 5318914111430 ‘BU 1115 (U0 110U [159)

1o0q B

615

Tseb q

TobeuRybISEL

Jobed |..
RIS

013 1Bu 15

. A WarsAsan: |
Tau o7 _ apeoeq [warsAsans [—
oL [1 1abeugnsel+ A i
P
TSksars
\\\ sasn
i

T o 921N IOMIBN[ENUIA JabedA jauan -

Byt T e s e ” ettt sobeum) 0g e adeats e

, i [Cnwaunsognous:] 13Bed¥s 1 -

Jabeuepadines ' ' Jeq | 10195+ Jabeugy 1.0d|
' S , 1oqeTs [Jabegu 1aA+
H 11p3 X8+ Jabed A jauan|
X0g0quUAD+
T uo1INgysnd+
(3beq) 1919ed 51 190 14] (:550.1ppe)30 In xogabessan+
555 ppvaIom N ol || (:ssauppe)ad Mopu M+ e oo - Jabeueywa)sAsqn:
«ooejio il @28 10 > s e R R B S -
To Ties Tuau iy 1o "
JabeueyAe|dsiq JBIpUeHIUAT
U0 1155 o) Tweapa s l]

Tuaabeug a0 Inosay|

Components of the OOD model.

Figure 4.31

84

CHAPTER 4. DESIGN

Chapter 5

Implementation

This chapter contains information about the prototype developed in parallel to this
diploma thesis. The next section contains some general hints on development of the
prototype and related components and short explanations of utility classes necessary
to write nearly all other components. It also discusses the design of secure services
implemented so far and describes required LINUX kernel modifications. Section 5.2
contains information about download, installation and use of the prototype.

5.1 Instead of a Developer’s Manual

This section contains developer-specific information which should later become a
separate DEVELOPERMANUAL.

5.1.1 Some Hints on Development

In this section some information about differences and peculiarities of programming
and compiling applications using FIASCO are discussed and it is explained how I
tried to solve some of these problems.

Programming Language. Usually any programming language can be used to
develop PERSEUS applications if it is possible to create wrappers which provide
Fiasco’s system calls. In my opinion using object-oriented languages can lead to
better implementation design, because it makes it easier to hide implementation
details and it has a better data type control. Thus my first task was to make it
possible to use C+-+ to implement subsystems. Another important point which
reduces the count of errors is to use existing data structures whenever possible.

Start Files. In general, the g++ compiler links some operating system depen-
dent start files to the compiled object which initialize some data and then invoke
the main() function. The start file provided by the compiler cannot be used if F1-
ASCO applications are created, thus linking against it has to be prevented using the
--nostartfiles option. Instead a small assembler file crt0.S is used which does
some initialization and reserves stack space. The current version does not initialize
global (and static) data. Until now I got no information how to do that, thus using
global objects can lead to errors.

Load Address. The compiler option “-W1,-N,-Ttext,<address>” defines the
address where the RMGR should load the application to. This is necessary, because
the RMGR cannot load subsystems to a virtual memory address. The developer
has to ensure that all applications are loaded to different addresses and that they
do not overlap.

85

86 CHAPTER 5. IMPLEMENTATION

Task Creation. Another problem occurs if a task (chief) starts a new task
(child) which uses objects containing static data members. In general, the chief
starts a pager which maps the child’s code into its address space read-only on
demand. Automatic data is created on the child’s stack, but static memory is not
created again, thus the child tries to access the chief’s static data. Because every
address space should contain its own instance of static memory, the pager has to
copy the demanded page in this case, but the problem is that the copied data is not
re-initialized (e.g. imagine a task’s thread-counter, which should be reinitialized to
zero on a new task). Solutions could be to avoid using static data members, or to
implement shared libraries or something like that. [34] could be a good starting
point.

Dynamic Memory. F1Asco does not provide dynamic memory management
(except page allocation/deallocation), thus only automatic or static data can be
used, or the application has to provide its own memory management functions.

STL. The probability of errors can be reduced if developers can use existing
data structures which are well-testes or evaluated. C++ provides a powerful library
containing standard data containers called Standard Template Library, short STL.
Development of new applications would be much easier if a library providing the
well-known STL interface could be used. The free CORBA implementation Mico!
contains a separated implementation called mini-stl which is much smaller than
e.g. the STL provided by the GNU gcc compiler.

5.1.2 Directory Structure

According to the GNU standard, sources are summarized in the subdirectory src,
additional documentation can be found in the subdirectory doc and the directory
tests contains some test applications. The directory hierarchy of the src directory
is similar to the respective package names of the last chapter. The main directory
contains configuration files of automake/autoconf, explained by the next section.

5.1.3 Automake/Autoconf

The GNU autoconf info pages explain: “Autoconf is a tool for producing shell
scripts that automatically configure software source code packages to adapt to many
kinds of UNIX-like systems. The configuration scripts produced by Autoconf are
independent of Autoconf when they are run, so their users do not need to have
Autoconf.”.

To generate autoconf-dependend makefiles Makefile. in the tool GNU automake
can be used. In this case developers only have to write very simple Makefile.am
files.

The most important file of autoconf is configure. in which contains all tests, to
be done by the configuration script, and general makefile definitions. Automake/autoconf
info pages contain more information.

5.1.4 Creating the Reference Manual

To generate a REFERENCEMANUAL (html and latex version) the tool doxygen? is
used which parsed C/C++ header files to extract information out of JavaDoc,
DOC++ and kdoc® compatible sourcecode comments. I decided to use this tool,
because it is more powerful and stable than the other tools mentioned above.

Lhttp://www.mico.org
?http://www.stack.nl/~dimitri/doxygen
3http://developer.kde.org

5.1. INSTEAD OF A DEVELOPER’S MANUAL 87

5.1.5 Writing Secure Applications

According to the description of this diploma thesis later evaluation of the imple-
mented components can be ignored, thus security-related implementation restric-
tions or rules have neither been drawn up, nor considered.

5.1.6 Utility Classes

This section contains an overview of important classes which make development of
secure applications easier. The following subsections do not contain detailed inter-
face definitions or descriptions of the behaviour, because this is the REFERENCE-
MANUAL'’s task. Instead, short descriptions of design decisions and implementation
details are explained.

5.1.6.1 Class: Heap

The class Heap is a very simple heap implementation to evaluate the design of the
secure environment and to be able to use dynamic memory. It allocates an increasing

«i nternal »
Block
+si ze: size_t
i *
«Utiliy» fmem _void
Heap n
- _endOf Menory: voi d* «link
al l ocMenory(:size_t,:Attribute): void* hol
freeMenor y(mem voi d*): void ole 4 next
- addManagenent Bl ock(: Menory*): Menory* T «i nt er nal »
-splitBlock(:Block,:size_t): void [} .
-findMat chi ngBl ock(: Menmory*, : si ze_t): Bl ock* for} Memory previous
-findMat chi ngHol e(: size_t): void* \1/ +si ze: size_t
-newBl ock(:size_t): void*

menory
Figure 5.1: Classes and their relations of the Heap implementation.

amount of memory pages aligned above statically mapped data. To manage memory
blocks it uses two lists of the class Block, hole and memory. The list memory contains
pointers to allocated memory blocks in use, the list hole contains pointers to deleted
memory blocks. In order to be able to dynamically enlarge the list of memory
blocks, arrays of Blocks are stored by Memory data structures which themselves
are stored within blocks. Nearly all private methods of the class Heap are used
to find/create/resize Block and Memory structures. The member _end0fMemory is
used to store the end address of used memory. To be able to provide error checking,
new memory pages are requested from the Heap’s pager, but this it not a must.
Figure 5.2 describes the hierarchical dependency between methods of class Heap by
a function tree.

A more complex environment providing dataspaces and dynamic memory with
different properties can be found in [34]. I did not use this implementation because
the version I have did not compile.

5.1.6.2 Class: Interrupt

This class hides details of registering and receiving hardware interrupts. It reserves
the interrupt number, given as constructor argument, and starts a new thread
which receives the p-kernel’s interrupt messages. The second constructor argument
expects an implementation of the InterruptHandler interface. If interrupts occur,
the receiving thread invokes the irq() method of the InterruptHandler. This class
is used by the KeyboardManager.

88 CHAPTER 5. IMPLEMENTATION

al | oc
Menory
find
Mat chi ng new
Hol e Bl ock
find : add
Mat chi ng Elpl ! }(Managenent
Bl ock oc Bl ock

Figure 5.2: Hierarchical dependency of the public method allocMemory () of the
class Heap.

5.1.6.3 Class: KeyboardStub

This class translates scancodes sent by the KeyboardManager into ASCII codes.
Currently only a subset of all possible codes are supported, other scancodes are
converted into spaces. To use it create a new instance and initialize it with the
Threadld of the KeyboardManager. The method next () returns the next valid ASCII
code. It is used by the AuthenticationManager.

5.1.6.4 Class: Thread

The functionality provided by this class has been discussed in Section 4.12.4. Be-
cause static data members are currently not initialized by the init file a small
workaround is used. The static data members Heap and Pager are returned by
static methods heap() and pager() which themselves contain appropriate static
data members. A ThreadManager is currently not implemented, instead the static
method newThreadId () returns a Threadld of an unused thread.

5.1.7 Packet: AccessControl

I decided not to implement ACEFs and ACDFs as described by Chapter 4 because
of the following reasons:

1. The design of the access control packet has not finished yet. New use cases
may lead to new requirements which change the API of the ACEF or ACDF.
Additionally it has to be examined whether the design fulfills all security-
related requirements.

2. Core developers of the microkernel to be used should take part of the design
of the ACEF and ACDF, because they have more experiences about contrains
and abilities of the p-kernel.

3. Because ACEFs have to start encapsulated subsystems as child tasks, imple-
mentations of the SubsystemManager, Loader and Installer are required. This
is (in my opinion) very complex and would use a lot of time. A prototype
which has a powerful access control implementation but no subsystems to
control is useless. I think it is better to have some implemented subsystems
which can then be used to examine new access control design models and
implementations.

5.1. INSTEAD OF A DEVELOPER’S MANUAL 89

Thus the AccessControl packet contains only a (very) simple implementation of the
interfaces NamingService and ServiceDB which may be implemented by the ACEF
later. Because the NamingService has to be accessed by all subsystems (and no ACEF
is available which can redirect the messages), the file globals.h of the directory
Interfaces contains a static Threadld called NS_TID which currently addresses
the first thread of the first task started after the FiaAsco-dependend boot mod-
ules. Later modifications (e.g. multi-threaded) should consider this. The headerfile
also contains a definition of the maximum length of the interface name, named
MAX INTERFACE_LEN, currently fixed to 128 bytes.

If subsystems demand non-existent services, the current implementation returns
a null address. This can cause problems if fast clients access the NamingService
before slow services are able to register themselves. Thus I inserted loops into the
start sequence of all clients (including LiNUX) which requery the naming service if
a query fails.

5.1.8 Packet: ResourceManagement

The subdirectory DisplayManager contains classes related to resources which pro-
vide a user interface.

5.1.8.1 Class: DisplayManager

The class DisplayManager of the ResourceManagement/DisplayManager directory im-
plements the TextDisplay interface by emulating a textmode VGA framebuffer. I
decided to implement only the textmode, to keep the implementation of the pro-
totype simple. It is the display manager’s task to protect a reserved region of the
display to show security-related information. Two different approaches are possible
how clients can modify the video memory:

1. The DisplayManager provides an interface to be used by clients to modify
the framebuffer, e.g. putChar(), putString(), fillRegion(), etc. This
approach is similar to the XServer-related suggestion of Chapter 4.

2. The DisplayManager reserves the whole video memory but maps them into the
address space of clients on demand.

Although the first approach should be desired (this makes it possible to provide
the same interface even if the DisplayManager uses the graphic mode), I decided to
implement the second approach because it can be implemented very easily. Addi-
tionally the first approach is slower because every letter has to be transmitted via
IPC.

To protect a region of the display the DisplayManager moves the first line of the
displayed memory area in such a way that the first line is on one memory page and
the other 24 lines are on the next one. Because the DisplayManager maps only the
second page into the address space of the client, the first line cannot be accessed
by the client subsystem itself. A disadvantage of this approach is that now two
4kB video pages are required, but this should not be a problem because VGA video
adapters have enough memory.

Subsystems should use the utility class TextConsoleStub (see Section 5.1.9.3),
which hides details of accessing the DisplayManager. This makes it possible to change
the DisplayManager in such a way that it uses graphic modes without modifications
of subsystems. A good starting point to implement a graphic mode DisplayManager
would be the abstract framebuffer interface provided by the LINUX kernel since
version 2.2.

90 CHAPTER 5. IMPLEMENTATION

In order to be able to reserve and therefore protect video memory the Display-
Manager has to be started before other untrusted subsystems can reserve these
memory regions. Of course only direct access of the memory can be prevented,
the DisplayManager cannot prevent that subsystems use the BIOS or the graphic
controller (by using I/0) to modify the video memory. This has to be enforced by
other components.

5.1.8.2 Class: KeyboardManager

As the class DisplayManager provides mechanisms to manage user output, the class
KeyboardManager, which implements the public interface Keyboard, hides details of
the keyboard hardware. On startup the PC keyboard interrupt (1) is reserved and
the keyboard controller is initialized. The Keyboard interface provides operations
to register and unregister subsystems which want to receive keyboard data. If an
interrupt occurs (a key is pressed), the appropriated message is forwarded to the
class ConsoleManager (see below) which decides which subsystem gets the input.

The messages of the KeyboardManager contain only scancodes (a key number),
sent by the keyboard controller, and status bytes. Subsystems have to translate
scancodes into ASCII numbers themselves (LINUX does it itself, trusted subsystems
can use the utility class KeyboardStub, see Section 5.1.6.3).

5.1.8.3 Class: ConsoleManager

It is the ConsoleManager’s task to synchronize user input and output by controlling
the KeyboardManager and the DisplayManager and to enforce user authentication.
It implements the TextConsole interface which provides methods to redirect user
input and output to another task and to unlock the display:

If LINUX boots it demands access to the display and keyboard by accessing the
Keyboard and TextConsole interface. These calls are forwarded to the ConsoleM-
anager which stores the ID of the Linux thread which receives the keyboard data
and switches to the LINUX screen (for debugging purposes). In contrast keyboard
messages are forwarded to a trusted subsystem which implements the Authentica-
tion interface (see Section 5.1.9.4). If authentication was successful the console is
unlocked and input and output is redirected to the LINUX kernel.

For debugging purposes hotkeys (<Ctrl>+<Shift>+[<F1>-<F4>]) are provided
to switch to another virtual console. This makes it possible to view debugging
output which is redirected by the microkernel to the first console. Switching to
another console is only possible after authentication.

If trusted subsystems demand access, the ConsoleManager first copies the current
screen and switches to console four. This is done to prevent that LINUX applications
overwrite the output of the trusted subsystem and to be able to restore the screen’s
state after the trusted subsystem releases the console.

Because of dependencies between KeyboardManager, DisplayManager and Con-
soleManager all three threads are provided by one subsystem UserInterface. Figure
5.3 illustrates the static model of the UserInterface subsystem; untrusted applica-
tions access the Keyboard and TextConsole interface, trusted components are able
to access the Console interface.

4The current design of these three threads/interfaces/classes seems to be too complicated. The
reason for this is that dependencies between keyboard input and console output depend on each
other which was not expected when I started to implement these classes. Because it works for my
purposes I decided not to modify them.

5.1. INSTEAD OF A DEVELOPER’S MANUAL 91

«Interface»
«Untrusted» registerss TextConsole
«|I<nt et;f acg» <registers Linux fonsore driver Tregist etr():()voi T*
eyboar +unr egi st er
y keyboard driver g
+regi st er (: Threadl d)
+unr egi ster () - 1
Thr ead»
Thr ead»

ZA Interrupt D

1 P DisplayManager

! +enabl e()

! +di sabl e()

«Thr ead»
KeyboardManager
InterruptHandler «Trust ed»
TTa(T Subsystem
: uses »
«Thr ead»
ConsoleManager

-aut henti cat ed: bool «Interface»
+regi sterTrust edTask(: Thr eadl d) Console
+unr egi st er Trust edTask(: Thr eadl| d)
+regi sterUntrustedTask(: Threadld) =~~~ ~~-~~~ >f+reserveConsol e()
+unr egi st er Unt r ust edTask(: Thr ead d) +rel easeConsol e()
-swi t chConsol e() +aut hent i cat ed(: bool)

Figure 5.3: Static model of the UserInterface subsystem.

5.1.9 Package: TrustedPath
5.1.9.1 A Virtual Linux Console

The file vcon. c (virtual console) works as a replacement of the 1386 /LINUX standard
console implementation vgacon.c. The file distributed with the source package can
only be loaded as a module (for test purposes); to ensure that LINUX uses the new
console driver on startup, some further patches are necessary and the file has to be
copied into the LINUX source tree.

Information about programming of the VGA video adapter have been extracted
from [46], unfortunately I found no documentation about the boot procedure of
LiNux and especially about initialization of the console drivers. Table 5.1 contains
a list of related files of the LINUX kernel.

| File | Modified]
include/linux/console.h yes
drivers/video/vcon.c new
drivers/video/vgacon.c no
drivers/char/console.c no
drivers/char/tty_io.c no
arch/14-1386/kernel/setup.c yes
init/main.c no

Table 5.1: Important LINUX kernel files which initialize the console driver(s).

5.1.9.2 A Virtual Linux Keyboard Driver

To adapt LINUX to the Keyboard interface the file vkeyb.c contains appropriate
wrapper functions which replace the default ones. Additionally the file
include/asm-14-1386/kernel/keyboard.h has to be modified to force the key-
board driver (drivers/char/keyboard.c) to use the new functions.

92 CHAPTER 5. IMPLEMENTATION

Keyboard status LEDs, which are usually modified by a bottom half® of the
keyboard interrupt handler, are currently not updated, because doing IPC on a
bottom half seems to disturb LiNUX (it produces only error messages “Scheduling
on Interrupt”).

5.1.9.3 Package: TrustedGUI

To make is possible to trusted subsystems to interact with users directly a simple
GUIT has to be implemented. Results of Section 5.1.8 are refined and a general GUI
interface is presented.

[Tr ust edGUI
«Impor t e «I mpor t e por t e npor t e «Tpor t ed»
Utilities: Atmbule Utilities: Char Utllmes POIm Utllmes Rect Utllmes :TextDocument
nterface»
Canvas
[¥put Ghar (& char , - Poi nt, AL r1 but €)
+pu|$tnr\g(char,:Point,: Attribute)
+cl ear Regi on(: Rect , : Attri but e)
+scrol | Region(: Rect, :int,:Direction,:Attribute)
+i nver t Regi on(: Rect)
+get Regi on(: Rect, : Char *)
+set Regi on(: Rect , : Char)
+moveRegi on(: Rect , : Poi nt)
+set Cur sor (: Poi nt)
Cache +hi deCur sor () T
FStor eRegi on(: Rect) H Adapt er ;
+1 est or eRegi on(: Rect) L L e

m ¢ «Rol e»
Widget TextConsoleStub - - - - = Textcoﬁsole
[*canvas(): Rect — —

et Ganvas(: Rect)
+rect(): Rect
+attr(): Attribute

I I I |

[Dialog | Label [LineEdit | [NumEdit | MultiLineEdit

+Set Text (const char+) [Fresurt - Threadidy-_char™ | et hreadiay ot | Fresul {(: Threadld): bool
+I'ength(): int +i nsert Char (: char)
+text(): const char* +cur sor Up()

—_— +cur sor Down()

+cur sor Ri ght ()
+cur sor Lef t ()
+backspace()

+del ()

[MsgBox | [LineEditDialog |

Fresult(: Threadi d):_char®

Figure 5.4: Components of the TrustedGUI package.

To keep it independent of the Userlnterface implementation, an abstract interface
to textmode output devices is provided by the abstract class Canvas (see Figure 5.4).
The provided interface is very similar to the interface between text console driver
and video driver used by the LINUX kernel. The class TextConsoleStub implements
this interface and adapts them to the interface provided by the TextConsole interface.

Another class which implements the Canvas interface is the class Widget which
acts as the base class of all GUI widgets. Therefore all widgets act as a canvas of
their children and the TextConsoleStub acts as the root canvas. The class Widget
extents the interface Canvas in such a way that it clears the background using a
user-defined color and provides methods to resize and move the canvas it provides
to its children. This feature is used, e.g. by the class Dialog which is derived from
Widget and draws a frame and a headline. To prevent that children overwrite the
frame, the canvas is moved and its size is decreased. Additionally the class Dialog
is derived from the class Cache which stores its background to an internal buffer
on construction and restores it on destruction. So all dialogs restore the region
they have overwritten explicitly if the method hide () is invoked, or implicitly on
destruction.

The class Label is derived from Widget and draws a static text which can be
aligned horizontally and vertically. LineEdit draws a one-lined edit field and provides

5Linux divides interrupt handler into top halves, which are executed immediately after an
interrupt and register appropriated bootom halves, which are executed as soon as possible.

5.1. INSTEAD OF A DEVELOPER’S MANUAL 93

simple editor functions to type a line of text. Very similar is the class NumEdit which
accepts only numeric values and converts them into an integer value.

The class MultiLineEdit acts as a simple editor which uses the imported class
TextDocument to store its content. If the shown document is larger than the Mul-
tiLineEdit’s size, it is possible to scroll its content horizontally and vertically. The
widget is activated by invoking the method result() and two return values are
currently supported:

True is returned if the user leaves the method using the <TAB> key.
False is returned if the user leaves the method using the <ESC> key.

Three classes are derived from Dialog. The class MsgBox provides an easy way to
show simple messages. The class LineEditDialog draws a dialog box which contains
a static label and a line edit dialog. It is possible to define whether the dialog shows
the letters typed by the user, or if only a placeholder is shown. This function is
used, e.g. to create a password dialog box.

5.1.9.4 Package: UserAuthentication

This subsystem implements the Authentication interface. After initialization it waits
for a keyboard messages forwarded by the ConsoleManager. If such kind of message
occurs it locks the display by invoking the ConsoleManager. Then a login dialog box
and a password dialog box is shown and received values are compared with internal
values. At least it unlocks the display and notices the ConsoleManager to forward
keyboard messages to the LINUX kernel if authentication was successfull. Else it
waits for the next keyboard message to restart the authentication process.

5.1.10 Package: CommunicationPath

The directory CommunicationPath/Router contains a simple router implementa-
tion according to Section 4.8.1. The presented version only accepts registration of
new network devices and sends back received IP packets by modifying the header
in such a way that ping packets are accepted by the sender as replies.

The subdirectory VirtualNetworkDevice contains a LINUX module which reg-
isters a new network device vnd (virtual network device) to the LiNux IP stack and
to the Router. To be able to use the device, it has to be opened and registered. Ex-
ample 5.1.10.1 loads the module, assigns IP address 192.168.96.6 to it and invokes
LINUX to forward packets which have the destination address 192.168.97.1 to it. If
you ping to this device you should get a reply.

5.1.10.1 Example: Opening and registering the vnd network device

The following LINUX network commands load and initialise the virtual network
module vnd.o.

insmod vnd.o

ifconfig vnd 192.168.96.6

route add -host 192.168.97.1 vnd
ping 192.168.97.1

5.1.11 Package: KeyManagement

The directory KeyManagement contains a subsystem PGP _ Certificate which provides
the interface Certificate (Interfaces/Certificate.h). It is similar to the require-
ments defined in Section 3.2.1. Additionally the key generation function, analyzed

94 CHAPTER 5. IMPLEMENTATION

in Section 3.2.2, is supported internally. An instance of the subsystem represents
exactly one key which can be created [F 15] and used to sign [F 65] an ASCII docu-
ment. To prevent that internal data has to be sent to another subsystem it contains
all internal functions demanded by Section 3.2.1. Also access control is enforced by
the subsystem which forces users to enter a password given by the creator of the
key. A key management service [F 10] is not provided because the naming service
can be used to delegate access to different Certificate instances.

The subdirectory Client contains a LINUX application seccert (explained in
Section 5.2.2.3) which makes it possible to use this subsystem.

Cryptographic functions [F 15] and [F 65] are currently only dummy implemen-
tations which show a simple GUI, but it should not be a problem to replace them
by other ones.

5.1.12 OOP Model

Figure 5.5 gives an overview about components which have been implemented so far.
Because the RMGR provided by the F1asco distribution does not support virtual
memory, all modules loaded on startup have to be loaded to another physical address
(see Section 5.1.1). Table 5.2 lists hardcoded start addresses and the length of all
subsystems started by the RMGR.

95

|Conmuni cat i onPat h

User Aut hent i cat i on TS [KeyManagement
[Device] Router

Froute()
+1 egi st er Devi ce()
+unr egi st er Devi ce()

R A Y\ N

«Rol e»

«QTent 05, Subsystem
Authentication ux

aut hent | cat e()

v
<Subsystem Thread» [[7 | 3 L {oevi nM <sends <Subsystem
AuthenticationManager VirtualConsole «Thr ead» «Thr ead» i «Subsyst em»
| _ _ VirtualKeyboard VirtualNetworkDevice ends » Ot Router_MainThread I OMMN m_m.wwﬁm
{Authentication} | {Roiiter] T nm:mwm_)
O -sign() —
_ SignDialog
<registers
<queries
reserves console»
<invokes
Di sp! ayManager
Text Di spl a
ROl &> \ Gonsol e} ¢ 3 <hides, uses
Console <Subsystem
Userlnterface
FreqTSterTruSt odTask()
+unr egi st er Tr ust edTask ()
unl ockconsol e() * {Keyboar d} [rccesscont rol
" kmc_ e» «Rol e»
H TextDisplay Keyboard
! Fregister() Tregister() (| {servicens} B Tr ust edaul
Thr ead> [unregi ster () +unregi ster () <Subsyst em A
ConsoleManager o Y NamingService |- - - - - - - - -*
~aut hent | cat ed:_bool ' ' Ve «Interface»
[*regi ster Trust edTask(; Thr eadl d) ol AA_d:_mm > « uﬁ .%_w_ » {Nami ngSer vi ce} <ol 6> Canvas
+unr egi st er Tr ust edTask(: Thr ead| d) isplayManager eyboardManager
+1 egi st er Unt r ust edTask(rw_:nws d) o play 9 Y 9 ServiceDB
+unr egi st er Unt r ust edTask(: Thr ead!
- swi t chConsol e() _ | | | queri es | Hpmw_mw"mﬁww.w%m_m%m: e mm e
| registers» ' H
«OEi 17ty !
TextConsoleStub Widget

INSTEAD OF A DEVELOPER’S MANUAL

5.1.

1
_ |

\v4 [Keyboardstub | TextDocument [MultiCineEdit] [LineEdit] [NumEdit] [Label]

Components implemented so far.

Figure 5.5

xﬂz_um_ww! [Fnext()-_char H_._onm%.zsazww»
—vo +at (row ui nt 32, |ine:uint32): char
Start() inetvork(): | P +insertLine(text:const char#, Iine: uint32)
a0 Threadid +i nsert At (const char*: text, | en: ui nt 32, row. ui nt 32, | i ne: ui nt 32)
istate(): State Rect +renove(row: ui nt 32, | i ne: ui nt 32, | engt h: ui nt 32)
trun() +l ength(): uint32 LineEditDialog
Pager |, +hal t () +topLeft(): Point +wr i te(dest : char*)
Jha) ea +bot t onRi ght (): Poi nt
= — +wi dth(): i nt
pager(J-_Pager Thr ead> i aht(): int
Interrupt +si ze(): i nf
[Fenabl e() |
+di sabl e() Line
Fset Text (const char *: text,Ten: ul nt 32)
Heap | m P +insert(const char*:text,|en:uint32,fow uint32): uint32
41 Doui
AT ocNeror y(51 z6 1, < AL LT bute): vor - _ [InterruptHandler | [__Point ot bute ALY S
+f reeMermory(: voi d*): void I arm) X(). W16 +r emove(row ui nt 32, | en: ui nt 32)
RSN N— +y(): uint16 +uri te(dest: char*)
h
Stub Attribute Version
[*send(ar go: dword_t, argl: aword_t): 1nt +bgCol or () Col or
+send(str:const char*,|en: uint32, arg0: dword_t,argl:dword_t): int +f gCol or (): Col or . Hﬁwrnu«mﬂw m”:“ _n“
rset Backgr ounddol or () (; Gol or) +pat chi'evel ()¢ int
gr oundCol or (* Col or)

96

CHAPTER 5. IMPLEMENTATION

5.2. INSTEAD OF A USER’S MANUAL 97

| Subsystem | Address | Length (byte) |
Sigma0 (Fiasco) 0x0080000 16096
NamingService 0x0300000 6160
Linux (gzipped) 0x03££000 435673
Router 0x0800000 254336
Certificate 0x0850000 271852
Authentication 0x0900000 263392
UserInterface 0x0950000 259484
RMGR (Fiasco) 0x1000000 154852

Table 5.2: Hardcoded start addresses and length of all implemented subsystems.

5.2 Instead of a User’s Manual

This sections contains user-specific information which should later become a sepa-
rated USERMANUAL.

5.2.1 Installation

It is assumed that an existing LINUX installation exists and that the GNU gcc
compiler is installed.

The package PERSEUS-<version>.tar.gz contains all sources of this diploma
thesis and additionally binary versions of components of third parties®. Unpack the
package and go to the main directory PERSEUS-<version>. The file s./INSTALL
and ./README contain general configuration and installation instructions. Read
them carefully!

Then start the configuration script by typing ’./configure [your options]’.
The installation directory given by the option “--prefix="is hence called <PATH>.
If configuration has finished successfully, you can start compilation by typing ’make”.
To copy all services to the defined installation directory type 'make install’.

5.2.1.1 Installation of the GRUB bootloader

To start F1ASCO a multiboot compliant bootloader is required. This subsection
describes required steps to install the GRUB bootloader which is contained in the
distribution.

This installation process overwrites the existing boot sector
of your harddisk, thus you should make a copy of it (better
backup the whole installation) and /or generate a bootdisk to
be able to reboot the system if something goes wrong!

To install the GRUB bootloader, change to the directory src/Boot and edit the file
menu.lst to adapt appropriate directory paths to your installation path (given by
the --prefix option of the configure script). Don’t forget to adapt the entries which
boot your existing LINUX installation. Then copy the files menu.lst, stage0 and
stagel to the directory /boot/grub. Now start GRUB by typing ’./grub’. The
following lines explain an example installation, but keep in mind that your partition
table may look different:

6The L4 port of Linux, the GRUB bootloader, the Fiasco u-kernel, the resourcemanager and
the sigma0 server.

98 CHAPTER 5. IMPLEMENTATION

grub> root (hd0,2)

grub> setup (hdO0)

grub> install <PATH>/boot/grub/stagel (hd0) <PATH>/boot/grub/stage?2
p <PATH>/boot/grub/menu.lst

grub> quit

This example expects that the first disk (hd0) is your boot disk and that LiNUX’s
root filesystem is on partition /dev/hda3 (!). If you’re unsure, download the GRUB
package or look for additional information at www.gnu.org/grub.

Now reboot the system and hope that it works.

5.2.2 Using
5.2.2.1 Booting

Use the GRUB bootloader to load the following components using the following
GRUB configuration

kernel = <PATH>/services/rmgr -configfile -sigmaO
module = <PATH>/services/fiasco -nokdb -nojdb
module = <PATH>/services/sigma0

module = <PATH>/services/rmgr.cfg.sure

module = <PATH>/services/NamingService

module = <PATH>/services/Authentication

module = <PATH>/services/Certificate

module = <PATH>/services/UserInterface

module = <PATH>/services/glinux.gz root=/dev/hda3

and ensure that the RMGR configuration file contains a line
memory in [0x0, 0x01000000]

to force LINUX to use only lower memory regions. If the RMGR configuration file
contains an entry bootwait you have to hit <Return> to start the RMGR. After
a little while you should be able to see LINUX’s boot output and a red line at the
top of the window, hence called headline, which tells you which task you actually
see. The color red indicates that the task is untrusted. If the color is green you are
using a trusted task.

5.2.2.2 Authentication

If LiNUX has finished booting and you press a key, the headline should become green
and you are requested by a dialog to enter a login name. Currently only “stueble”
is a valid login name. If you hit <Return> you have to enter a password. Type
“sure” and hit <Return> again. If authentication was successfull, a green message
box is shown for a short time interval and LINUX gets the keyboard and display
focus (the headline becomes red).

If authentication failed a red alert box is shown for a longer (than the green
message box) time interval. Then you can retry authentication.

5.2.2.3 Using Linux and a trusted application

If authentication was successful you can use LINUX as you are used to (graphic
mode does currently not work). Try to use the virtual network device as explained
in Section 5.1.10.

5.3. CONCLUSION AND FUTURE WORK 99

To create a new certificate securely you have to compile and install the program
seccert which can be found in the directory KeyManagement/Client.

If you enter “seccert -k” a trusted application should get the focus which shows
a small dialog to select attributes and a password of the certificate to be created.

To sign a text document type “seccert -s <filename>”! The trusted certifi-
cate application gets the focus, shows the task-id of the task which invokes it and
starts a simple editor to view/edit the document to be signed. <ESC> aborts the
trusted program. If you type <TAB> to continue you have to enter the password
selected while key creation. If the password is correct, the file <filename>.signed
should contain the signed document.

5.3 Conclusion and Future Work

The first part of this work has examined basic requirements of a secure kernel
which acts in parallel to and protected from an existing operating system. Results
of these analysis phase have been used to illustrate existing problems to demand
security related properties of underlying components and to design a first model
of services which have to be provided by the secure environment. A first working
implementation based on the FIASCO p-kernel and the operating system LINUX is
presented which contains all required components to securely sign documents which
have been created under LINUX.

The next development steps should aim to modify the init file crt0.S in such a
way that static data is initialized, because non-initialization of static data is error
prone and makes the code more complicated than necessary. Further improvements
should provide a system-wide memory pager which supports virtual memory and
has an interface which considers memory attributes like integrity or confidentiality.
Additionally development of subsystems would be easier if the RMGR would be
able to load them to virtual addresses to prevent overlappings.

To be able to develop an ACEF the SubsystemManagement package is required to
make it possible for ACEF instances to start new subsystems on their own. The pack-
ages TrustedGUI and ResourceManagement should be extended by an event-handler
which replaces the currently available Keyboard and Console interfaces. The Even-
tHandler should provide a secure interface to services in need of non-deterministic
data input, as for example random generators.

Before the secure environment is ported to a small-sized PDA, a secure shared
library concept should be made available to save physical memory.

100 CHAPTER 5. IMPLEMENTATION

Appendix A

System Requirements
Specification

A.1 Purpose

A system has to be developed which provides a secure environment for security- and
privacy-critical applications of e-business and related legal and social interaction.
In parallel an existing operating system (Client OS) shall provide users and devel-
opers a usual environment. Functions and services of the secure environment shall
be accessible through well-defined interfaces which guarantee enforcement of the
security policy of the secure environment. Users shall be able to verify the correct-
ness and security of the software and, if demanded, be able to exchange individual
components.

A.2 Functions

The secure environment shall contain services to securely generate, manage and
use cryptographic keys of at least one common cryptographic data exchange format
(e.g. OpenPGP or S/MIME). Additionally a trusted document viewer or a trusted
document editor (optional) and related security-management functions shall be pro-
vided.

In order to be able to provide these abstract functions all security-related un-
derlying components, including access control and resource management, should be
designed and implemented in such a way that later evaluation is possible.

A.3 Properties

The secure environment should be able to protect user and system data against
malicious applications (viruses and trojan horses) and similar sorts of internal and
external attacks by enforcing its own security policy, independent of security poli-
cies of the Client OS. Meaningful default values shall be provided which guarantee
security without special user knowledge about security and cryptography, but ex-
perienced users shall be able to overwrite default values and/or define their own
security policy. Later evaluations according to common criteria (e.g. ITSEC, Com-
mon Criteria) should be considered by the design model and the implementation.

101

102 APPENDIX A. SYSTEM REQUIREMENTS SPECIFICATION

A.3.1 Protection Profile
[Not provided by this diploma thesis].

A.4 Tests
The secure environment should be tested by developing some secure applications:

1. A signature application which provides functions to securely sign ASCII doc-
uments by Client OS applications.

2. A secure stock broking application (optional).

Appendix B

System Definition

B.1 Purpose
Develop a secure environment for security- and privacy-critical applications of e-

business and related legal and social interaction which provides confidentiality and
integrity to protect user and system data against external and internal attacks.

B.2 System Environment

Software

e FIASCO microkernel

L4-LiNnux as Client OS.

EPOC as Client OS of a PDA (optional).

GRUB boot loader, version 0.5.94

Hardware

e IBM Thinkpad 600E, Intel Pentium IT 366 MHz (default)
e Dell Latitude XPi, Intel Pentium I 133 MHz

e PDA (optional)

B.3 Security Requirements

B.3.1 Security Target(s)

To be derived from Protection Profiles listed in Appendix A.
[Not provided by this diploma thesis]

B.3.2 Cryptographic Support

[SR1] The TSF shall be able to generate cryptographic keys in accordance
with a specified cryptographic key generation algorithm and specified
cryptographic key sizes that meet specified standards.

103

104

[SR10]

[SR15]

[SR20]

[SR40]

B.3.3
[SR60]

[SR65]|

[SR80]

[SR81]

[SR85|

[SRS6|

[SR87]

[SR8S]|

[SR100]

[SR105]

[SR106]

[SR110]

[SR111]

APPENDIX B. SYSTEM DEFINITION

The TSF shall distribute cryptographic keys in accordance with a spec-
ified cryptographic key distribution method that meets specified stan-
dards.

The TSF shall be able to perform cryptographic key access in accordance
with a specified cryptographic key access method that meets specified
standards.

The TSF shall destroy cryptographic keys in accordance with a specified
cryptographic key destruction method that meets specified standards.

The TSF shall be able to perform cryptographic operations in accor-
dance with a specified cryptographic algorithm and cryptographic key
size that meet specified standards.

User data protection

The reference monitor has to be able to cover all upcoming operations
between all objects and subjects which are not fully trusted.

The reference monitor has to be able to support several access control
policies in parallel.

The TSF shall enforce related SFPs when exporting user data , con-
trolled under the SFPs, outside the TSC.

The TSF shall be able to export user data without the user data’s
associated security attributes.

The TSF shall be able to enforce all access and data flow control policies
when importing user data, controlled under the SFP, from outside the
TSC.

The TSF shall be able to use security attributes associated with the
imported user data.

The TSF shall be able to ensure that the protocol used provides for the
unambiguous association between the security attributes and the user
data received.

The TSF shall be able to ensure that interpretation of security attributes
of imported user data is as intended by the source of the user data.

The TSF shall be able to ensure that any previous information content
of a resource is made unavailable upon the deallocation of the resource.

The TSF shall be able to enforce all access and information flow control
SFP(s) to permit the rollback of all operations on all objects.

The TSF shall permit operations to be rolled back within a configurable
time interval.

The TSF shall be able to monitor user data within the TSC for software
bugs, memory errors on all objects.

Upon detection of a data integrity error, the TSF shall rollback into the
last coherent state.

B.3. SECURITY REQUIREMENTS 105

[SR115]

[SR120]

[SR121]

B.3.4
[SR135]

[SR143]

[SR150]

[SR151]

[SR155]

[SR156]

[SR160]

[SR165]

B.3.5
[SR170]

[SR171]

[SR180]

[SR181]

[SR185]

The TSF shall be able to enforce all access and information flow control
SFP(s) to be able to transmit and receive objects in a manner protected
from unauthorized disclosure.

The TSF shall be able to enforce all access and information flow con-
trol SFP(s) to be able to transmit and receive user data in a manner
protected from modification, deletion, insertion and replay errors.

The TSF shall be able to determine on receipt of user data, wether
modification, deletion, insertion and replay has occurred.

Identification and Authentication

The TSF shall be able to maintain security attributes to individual
users.

The TSF shall allow only user-authentication on behalf of the user to
be performed before the user is authenticated.

The TSF shall provide smartcard-based and password-based authentica-
tion mechanisms to support user authentication.

The security admin has to be authenticated using the smartcard-based
mechanism; the admin and the user can be authenticated using the
password-based mechanism.

The TSF shall re-authenticate the user under the following conditions:
changes of assigned roles and after a configurable time-interval of user
inactivity.

The TSF shall provide only the number of characters typed or the char-
acters typed to the user while authentication is in progress.

The TSF shall require each user to identify itself before allowing any
other TSF-mediated actions on behalf of that user.

The TSF shall associate the appropriate user security attributes with
subjects acting on behalf of the user.

Security management

The TSF shall restrict the ability to invoke security-related functions to
the security-admin role.

The TSF shall restrict the ability to invoke non security-related func-
tions which globally change the system behaviour to the admin role.

The TSF shall enforce the access and information flow control SFP(s) to
restrict the ability to modify critical security attributes to the security-
admin role.

The TSF shall enforce the access and information flow control SFP(s)
to restrict the ability to modify non-critical security attributes to the
admin role.

The TSF shall ensure that only secure values are accepted for security
attributes.

106

[SR190]

[SR191]

[SR195]

[SR196]

[SR198]

[SR200]

[SR205]

[SR206]
[SR208]

[SR209]

[SR210]

[SR211]
[SR215]

B.3.6
[SR250]

[SR280]

[SR281]

[SR285]

[SR286]
[SR290]

[SR295]

[SR296]

APPENDIX B. SYSTEM DEFINITION

The TSF shall restrict the ability to change security-related data to the
security-admin role.

The TSF shall restrict the ability to change system-wide data to the
admin role.

The TSF shall restrict the specification of the limits for security-related
data to the security-admin role.

The TSF shall restrict the specification of the limits for system-wide
data to the admin role.

The TSF shall be able to take actions, if the TSF data are at, or exceed
indicated limits.

The TSF shall ensure that only secure values are accepted for the TSF
data.

The TSF shall restrict the ability to revoke system wide security at-
tributes within the TSC to the security-admin role.

The TSF shall be able to enforce the revocation rules.

The TSF shall be able to restrict the capability to specify an expiration
time for security attributes to the security-admin role.

For each of this security attributes, the TSF shall be able to take some
actions after the expiration time for the indicated security attribute has
passed.

The TSF shall be able to maintain roles.
The TSF shall be able to associate users with roles.

The TSF shall be able to require an explicit request to assume roles.

Protection of the TSF

The TSF shall be able to ensure the operation of critical functions when
software bugs of non-core components occur.

After a failure or service discontinuity, the TSF shall enter a maintenace
mode where the ability to return the TOE to a secure state is provided.

The TSF shall be able to ensure that failure scenarios have the property
to that the SF either completes successfully, or for the indicated failure
scenarios, recovers to a consistent and secure state.

The TSF shall be able to detect replay for a pre-defined list of entities.
The TSF shall be able to perform actions when replay is detected.

The TSF shall ensure that TSP enforcement functions are invoked and
succeed before each function within the TSC is allowed to proceed.

The unisolated portion of the TSF shall maintain a security domain for
its own execution that protects it from interferences and tampering by
untrusted subjects.

The TSF shall enforce separation between the security domains of the
subjects in the TSC.

B.3. SECURITY REQUIREMENTS 107

[SR297]

[SR298]

[SR299]

[SR300]
[SR310]

[SR311]

B.3.7
[SR310]

[SR315]
[SR320]
[SR321]

[SR325]

B.3.8
[SR340]

[SR341]

[SR345]

[SR346]

The TSF shall maintain the part of the TSF that enforces the access
control and/or information flow control SFPs in a security domain for
its own execution that protects them from interferences and tampering
by the remainder of the TSF and by subjects untrusted with respect to
the TSF.

Layers below the red line (Figure 1.1) have to protect security domains
against all other accesses which are not covered by the access control
mechanisms.

Subsystems should be able to refine system-wide or enforce local security
policies.

The TSF shall be able provide reliable time stamps for its own use.

The TSF shall ensure that TSF data is consistent when replicated be-
tween parts of the TOE.

When parts of the TOE containing replicated TSF data are discon-
nected, the TSF shall be able to ensure the consistency of the replicated
TSF data upon reconnection before processing any requests.

Resource allocation

The TSF shall be able to ensure the operation of core components when
the following errors occur: software failure of non-core components.

The TSF shall mediate all unshareable resources by trusted components.
The TSF shall assign a priority to each subject in the TSF.

The TSF shall ensure that each access to unshareable resources is me-
diated on the basis of the subjects assigned priority.

The TSF shall enforce maximum quotas of all unshareable resources.

TOE access

The TSF shall be able to lock an interactive session after a specified
time interval of user inactivity by:

1. clearing or overwrite display devices, making the current contents
unreadable.

2. disabling any activity of the user’s data access/display devices
other than unlocking the session.

The TSF shall be able to require events (e.g. re-authentication) to occur
prior to unlocking the sessions.

The TSF shall allow user-initiated locking of the user’s own interactive
session, by:

1. clearing or overwrite display devices, making the current contents
unreadable.

2. disabling any activity of the user’s data access/display devices
other than unlocking the session.

The TSF shall be able to require events (e.g. re-authentication) to occur
prior to unlocking the sessions.

108

APPENDIX B. SYSTEM DEFINITION

B.3.9 Trusted path/channels

[SR350]

[SR351]

[SR352]

[SR355]

[SR356]

[SR357]

B.3.10
[SR400]
[SR405]

The TSF shall provide a communication channel between itself and a
remote trusted IT product that is logically distinct from other commu-
nication channels and provides assured identification of its end points
and protection of the channel data from modification or disclosure.

The TSF shall be able to initiate a communication to another trusted
IT product via the trusted channel.

The TSF shall initiate communication via the trusted channel for down-
load of new content.

The TSF shall provide a communication path between itself and lo-
cal users that is logically distinct from other communication paths and
provides assured identification of its end points and protection of the
communicated data from modification or disclosure.

The TSF shall permit the TSF and local users to initiate communication
via the trusted path.

The TSF shall require the use of the trusted path for initial user authen-
tication and every communication between user and secure environment.
Miscellaneous

Subsystems should only be able to access other subsystems indirectly.

References to other subsystems should only be locally valid.

B.4 System Functions

External functions

[F3]

[F5]

[F15]

[F30]
[F40]

[F45]

[F75]

[F85]

[F90]
[F95]

Communication channel between Client OS applications and secure plat-
form.

A sign function to the Client OS which accepts a plaintext and a key-id
as arguments.

A key generation service with no arguments which provides abstract
security levels and key identifiers in a user-readable format.

A function to extract a public key.

A function to start a new subsystem, which accepts a protocol definition
and a destination as argument.

A function to remove an already installed subsystem. The argument
should be a reference to the subsystem.

A naming service which maps external subsystem references into an
internal data type and vice versa.

A function to open a new session which authenticates users before open-
ing a session.

A function to close the current session.

A function to rollback the system state.

B.5. SYSTEM DATA 109

Internal functions

[F10]
[F20]
[F25]
[F35]
[F50]
[F52]
[F55]
[F60]
[F65]
[F70]

[F71]

[F78]
[F80]

[F81]
[F95]

[F100]
[F105]

[F110]

[F115]

[F120]

B.5
[D10]
[D20]
[D30]

[D40]
[D30]

A crypto-standard independent key management service.

A random bit generator service which xors different random streams.
A random generator which generates random bits from user input.

A service to copy external data into the secure environment.

A service which stores dependencies between installed subsystems.

A function to parse data and then execute it as a new subsystem.

A service helps users to define permissions of a new subsystem.

A hash function which matches a defined crypto standard.

A sign function which matches a defined crypto standard.

A function to convert ASCII text into a binary format which matches a
defined standard.

A function to convert binary data into ASCII text which matches a
defined standard.

A version scheme to distinguish interface versions.

A function to store the complete system state to a persistent storage.
This function has to ensure that the state of the current session is stored.

A function to restore the system state from data stored by [F80]. It
has to ensure that after loading into the latest state a authentication
mechanism is invoked.

A function which returns the current time.
The secure environment should provide its own trusted GUI toolkit.

A document viewer which can display documents in a well-known and
system-independent format.

A function which makes security attributes assigned to subjects acting
on behalf of users available to subsystems accessed by these subjects.
Required to enforce local security policies or refine them.

It should be possible for permitted subsystems to synchronize their local
references, required by [SR 400].

Local references, required by [SR 405], of subsystems of incoming and
outgoing messages should be synchronized.

System Data

A users secret key.
A complete copy of the latest consistent system state (optional).

An application-info describes the demanded permissions of an applica-
tion.

An application-certificate defines the permissions of an application.

Dependencies between subsystems.

110 APPENDIX B. SYSTEM DEFINITION

B.6 User friendlyness and flexibility

[P5] An existing operation system makes existing applications available to
the user.

[P10] Emergency PIN (optional)

[P15] The user is able to choose between security and usability.

[P20] Meaningful default values.

B.7 Quality Demands

| Quality || very good | good | normal | not relevant |

Functionality X
Security X
Reliability X
Useability X
Efficiency x
Changeability X

B.8 Test scenarios
The secure environment should be tested by developing some secure applications:

1. A signature application which provides functions to securely sign ASCII doc-
uments by Client OS applications.

2. A secure stock broking application.

B.9 Development Environment

Using vmware version 1.0 does not work because the GRUB boot loader does not
run. Version 2.0 should be tested because of shorter development circles.
Table B.1 lists types and components of used development platforms. Software

| PC | Processor | Operating System | Environment |
IBM Thinkpad 600E | Intel Pentium IT 366 MHz Linux 2.2.14 SuSE 6.3
Dell Latitude XPi Intel Pentium 133 MHz Linux 2.2.13 SuSE 6.3
No Name Intel Celeron 466 MHz Linux 2.2.14 SuSE 6.3

Table B.1: Hardware used as develop environment.

components and versions of the development environment are listed by Table B.2.

B.9. DEVELOPMENT ENVIRONMENT 111

| Software | Version |
GNU gce 2.7.2.3
GNU automake 1.4
GNU autoconf 2.13
GRUB bootloader 0.5.94
doxygen 0.49-991003

Table B.2: Software used for development.

112 APPENDIX B. SYSTEM DEFINITION

Appendix C

Abbreviations

ACDF Access Control Decision Facility

ACEF Access Control Enforcement Facility

ACL Access Control List

API Application Programming Interface
BIOS Basic Input-/Output System

CC Common Criteria

CPL Current Privilege Level

DFD Data Flow Diagram

DMA Direct Memory Access

IOPBM Input/Output Permission Bitmap
IOPL Input/Output Privilege Level
IPC Inter Process Communication
00 Object Oriented

0O0A Object-Oriented Analysis

(0]0)} Object-Oriented Design

(0]0) Object-Oriented Programming
0S Operating System

PCS Program Control Structure
PDA Personal Digital Assistant

PP Protection Profile

RBAC Role-Based Access Control
RMGR Resource Manager
RM Reference Monitor

SE Secure Environment

113

114 APPENDIX C. ABBREVIATIONS

SF Security Function

SFP Security Function Policy
SRS System Requirements Specification
ST Security Target

STL Standard Template Library
TID Thread Identifier

TOE Target of Evaluation

TSC TOE Scope of Control
TSF TOE Security Functions
TSP TOE Security Policy

TSS Task State Segment

UML Unified Modeling Language

Appendix D

Glossary

Access Control Mechanism — Reference Monitor

Access Control Model A definition of syntax of rules to express — Access Con-
trol Policies.

Access Control Policy Rules which determine how accesses are controlled and
access decisions determined.

Address Space A mapping which associates each virtual page to a physical page
frame or marks it non-accessible.

Analysis Pattern A — Pattern which provides solutions of frequent analysis prob-
lems.

Atomic Operation An operation which is finished successfully or aborted com-
pletely.

Automatic Memory Memory which is allocated on the task’s stack if the pro-
gram counter enters its range of validity, and released if the program counter
leaves it.

Client OS An operating system which is running as a subsystem of the — Fiasco
— Microkernel and provides a familiar environment to users and developers.

Common Criteria Common Criteria for Information Technology Security Eval-
uation, ISO/IEC 15408.

Design Pattern A — Pattern which provides solutions of frequent design prob-
lems.

Dynamic Memory Memory which is allocated and released only by explicit func-
tions.

Fiasco A — Microkernel developed by the DROPS project of the University of
Dresden.

Global Memory Memory which is allocated and initialized before the main()
function is entered. Can be accessed by all functions/classes of the same
— Address Space.

Heap Memory — Dynamic Memory.

Implementation Pattern A — Pattern which provides solutions of frequent pro-
gramming problems.

115

116 APPENDIX D. GLOSSARY

Message Redirection Mechanism A concept of an abstract machine which redi-
rects messages sent between —Subsystems to a defined Subsystem.

Microkernel A minimized operating system kernel which only provides an ab-
stract view of the hardware.

Naming Service A service which maps — Service descriptions to — Subsystem
identifiers.

Object-Oriented Analysis The phase of object-oriented development which de-
termines and describes requirements of the product to be developed and which
forms the conceptual solution by an OOA model.

Object-Oriented Design The phase of object-oriented development which real-
izes the OOA model with respect to constraints of the real world. The result
is an OOD model.

Object-Oriented I'mplementation The phase of object-oriented development which
realizes the OOD model using a specific programming language.

Object-Oriented Programming — Object-Oriented Implementation.

Pattern Describes classes of problems and provides general solutions of the prob-
lem which can often be used.

Persistence A persistent object stores its state, even if the environment (com-
puter, operating system, program) is not active.

Protected Domain The smallest execution unit that can be protected by the
— Microkernel or the underlying hardware.

Protection Profile An implementation-independent set of security requirements
for a category of — TargetsOf Evaluation that meet specific consumer needs.

Reference Monitor The concept of an abstract machine which enforces — Access Con-
trol Policies.

Role A predefined set of rules establishing allowed interactions between users and
— Targets Of Evaluation.

Secure Environment All security-related layers which are required to provide a
trusted path between secure application and user.

Security Function A part or parts of the — Target Of Evaluation that have been
relied upon for enforcing a closely related subset of the rules from the - TOFE
Security Policy.

Security Function Policy The Security Policy enforced by a — Security Func-
tion.

Security Target A set of security requirements and specifications to be used as
the basis for evaluation of an identified — Target Of Evaluation.

Session The time interval between user log-in (opening a session) and log-out
(closing a session). Accessing subsystems is only possible if users have opened
a session before.

Service A — Subsystem which provides functions to other subsystems.

117

Static Memory Memory which is allocated before the function containing the
static data is entered. In C++ static data members are allocates like global
memory, before the main() function is invoked.

Subject An entity within the — Target of Evaluation that causes operations to be
performed.

Subsystem — Protected Domain

System Definition Describes all required functions and a conceptual solution of
an IT product.

System Requirements Specification Describes required functions of an IT prod-
uct and the constraints under which it must operate. It shall be written in
such a way that it is understandable by customers without special knowledge.

Target Of Evaluation An IT product or system and its associated administrator
and user guidance documentation that is the subject of an evaluation.

TOE Security Functions A set consisting of all hardware, software, and firmware
of the — Target Of Evaluation that must be relied upon for the correct en-
forcement of the — TOFE Security Policy.

TOE Security Policy A set of rules that regulate how assets are managed, pro-
tected and distributed within a — Target Of Evaluation.

TSF Scope Of Control The set of interactions that can occur with or within a
— Target Of Evaluation and are subject to the rules of the —TOE Security
Policy.

UML — Unified Modeling Language

Unified Modeling Language A language to analyse and design object-oriented
systems. It unifies object-oriented methods of Booch, OMT and OOSE and
has been accepted by the OMG (Object Management Group) in 1997.

Use Case "Specifies the behaviour of a system or a part of the system and is a
description of a set of actions, including variants, that a system performs to
yield an observable result of value to an actor.”, [36].

XServer An application which provides an abstraction of the video hardware and
can be accessed by XClients via a specific protocol.

118 APPENDIX D. GLOSSARY

Appendix E

Contents of the CD-Rom

The main directory of the CD-Rom distributed with this diploma thesis contains
different versions of this work, e.g. a postscript (Stue00.ps) and a PDF version
(Stue00.pdf). A html version, generated by latex2html, can be found in the
subdirectory Stue0Q0_html.

The subdirectory Stue00_src contains all sources of this diploma thesis, e.g.
Latex files, postscript figures and UML diagrams generated by dia.

Subdirectory Documents contains postscript/pdf documents which have been
referenced by this work (if available online) and some additional information /papers.
Read Documents/index.html for a more precise overview.

The directory PERSEUS-0. 1 contains the source code of the first prototype devel-
oped by this diploma thesis. It also contains a postscript, PDF and html version of
the REFERENCE MANUAL, generated by doxygen, in the subdirectory doc/refman.

119

120 APPENDIX E. CONTENTS OF THE CD-ROM

Bibliography

[1] Cryptographic Message Syntax. Internet Draft draft-ietf-smime-cms-*.txt.
[2] OpenPGP Message Formats. Internet Draft draft-ietf-openpgp-formats-*.txt.
[3] James L. Antonakos. The Pentium Microprocessor. Prentice Hall Inc., 1997.
[4] Heide Balzert. Lehrbuch der Objektmodellierung. Spektrum Verlag, 1999.

[5] Helmut Balzert. Software-Entwicklung. Lehrbuch der Software-Technik, Band
1. Spektrum Verlag, 1996.

[6] Michael Barabanov. An Introduction to RT-Linuz. 1998.

[7] D.E. Bell and L.J. La Padula. Secure Computer Systems. Mitre Corperation,
1974.

[8] Joachim Biskup. Grundlagen von Informationssystemen. Vieweg Verlag, 1995.

[9] Joachim Biskup. Sicherheit in Rechnersystemen: Fragen und Lésungsansdtze.
Fachbereich Informatik, Universitit Dortmund, 1998.

[10] G. Booch, J.Rumbaugh, and I. Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

[11] Brey. The Intel i386 Microprocessor family. 1996.
[12] Alan Cox. Network buffers and memory management. Linuz Journal, 1996.

[13] DeMarco. Structured Analysis and System Specification. Englewood Cliffs:
Yourdon Press, 1979.

[14] D.E. Denning. A lattice model of secure information flow. In Communications
of the ACM 20,7, pages 504-513, 1977.

[15] Kevin Elphistone, Stephen Russel, and Gernot Heiser. Supporting persistent
object systems in a single address space. Technical report, School of Computer
Science and Engineering. The University of New South Wales, 1996.

[16] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison Wesley, 1995.

[17] G. Heiser, K. Elphinstone, S. Russel, and G.R. Hellestrand. A distributed
single address-space operating system supporting persistence. Technical Report
SCS&E Report 9302, Computer and Systems Technology Laboratory, School
of Computer Science and Engineering; The Univerity of New South Wales,
Kensington NSW, Australia 2033, March 1993.

121

122 BIBLIOGRAPHY

[18] G. Heiser, K. Elphinstone, S. Russel, and J. Vochteloo. Mungi: A distributed
single address-space operating system. Technical report, Computer and Sys-
tems Technology Laboratory, School of Computer Science and Engineering;
The Univerity of New South Wales, Kensington NSW, Australia 2033, 1994.

[19] Michael Hohmuth. The Fiasco Kernel, Requirements Definition. Technical
Report ISSN 1430-211X, Dresden University of Technology, Dept. of Computer
Science, December 1998.

[20] Hermann Hartig, Michael Hohmuth, and Jean Wolter. Taming Linux. Technical
report, Dresden University of Technology, Dept. of Computer Science, 1998.

[21] Hermann Hértig, Birgit Pfitzmann, James Riordan, and Michael Waidner. Ne-
cessity and preliminary architecture of a security platform for mobile devices.
Private communication, 1999.

[22] Intel Corporation. The 886 DX Microprocessor Programmer “s Reference Man-
wal, 1990.

[23] T. Jaeger, A. Prakash, J. Liedke, and N. Islam. Flexible control of downloaded
executable content. In Transactions on Information and System Security, pages
177-228. ACM, May 1999.

[24] Gerard Lacoste, Birgit Pfitzmann, Michael Steiner, and Michael Waidner. Sem-
per final report. Technical report, to appear in LNCS, Springer-Verlag, Berlin,
1999.

[25] Jochen Liedke, editor. Clans and Chiefs. Architektur von Rechnersystemen,
12. GI/ITG Fachtagung, Kiel, 1992.

[26] Jochen Liedke, editor. A Persistent System in Real Use. Experiences of the
first 18 Years, International Workshop on Object-Orientation in Operating
Systems, Asheville, North Carolina, December 1993.

[27] Jochen Liedke. L4 Reference Manual. GMD, 1996.

[28] Norbert Luckhardt. Eigentor - Ersatzschliissel hebelt Exportkontrolle aus. ¢’
Magazin fir Computertechnik, (19):68, 1999.

[29] Norbert Luckhardt. Send it: Programmierer lasen e-mails mit. ¢t Magazin fiir
Computertechnik, (3):64, 2000.

[30] Matthias Schunter and Christian Stiible. Effiziente Implementierung von kryp-
tografischen Datenaustauschformaten am Beispiel OpenPGP und S/MIME v.3.
In Sicherheitsinfrastrukturen, DuD Fachbeitrige, pages 272-284. Vieweg Ver-
lag, 1999.

[31] Frank Mehnert. Portierung des SCSI Gerateftreibers von Linux auf L3. Beleg,
TU Dresden, November 1996.

[32] Frank Mehnert. Ein zusagefihiges SCSI Subsystem fiir DROPS. Diplomarbeit,
TU Dresden, Januar 1998.

[33] Scott Meyers. Effective C++. Addison Wesley, 2nd edition, 1997.

[34] Jens Nerche. Dynamisches Nachladen von Komponenten in DROPS. Grofier
beleg, Technische Universitat Dresden, Mai 1999.

[35] B. Oestereich. Objektorientierte Softwareentwicklung: Analyse und Design mit
der Unified Modeling Language. Oldenbourg-Verlag, Wien, 1997.

BIBLIOGRAPHY 123

[36] OMG. Unified Modeling Language Specification (draft), version 1.3 edition,
March 1999. www.rational.com/uml.

[37] Common Criteria Project Sponsoring Organisations. Common Criteria for
Information Technology Security Evaluation (Version 2.1). Common Criteria
Project Sponsoring Organisations, August 1999. adopted by ISO/IEC as Draft
International Standard DIS 15408 1-3.

[38] Amun Ott. Regelsatz-basierte Zugriffskontrolle nach dem ’'Generalised Frame-
work for Access Control’ Ansatz am Beispiel Linux. Diplomarbeit, Universitat
Hamburg, November 1997.

[39] Alessandro Rubini. Linuz Device Drivers. O’Reilly Verlag, 1998.

[40] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. In IEEE Computer 98,2, pages pp. 38-47, 1996.

[41] A. Silberschatz. Operating System Concepts. Addison Wesley, 5th edition,
1998.

[42] Vivek Singhal, Sheetal V. Kakkad, and Paul R. Wilson. Texas: An efficient,
portable persistent storage. In Persistent Object Systems, San Miniato 1992,
pages 11-33. Springer-Verlag, 1992.

[43] Rene Stange. Systematische Ubertragung von Gerétetreibern von einem mono-
lithischen Betriebssystem auf eine mikrokernbasierte Architektur. Diplomar-
beit, TU Dresden, 1996.

[44] B. Stroustrup. The C++ Programming Language. Addison Wesley, 2 edition,
1995.

[45] Sun Microsystems Inc. The Java Wallet(tm) Archi-
tecture White Paper, March 1998. obtained from
<http://java.sun.com/products/commerce/docs/whitepapers/arch/architecture.pdf>.

[46] Michael Tischer. PC intern 3.0. Data Becker, 1992.

[47] Sven Wohlgemuth. Schliisselverwaltung - Objektorientierter Entwurf und Im-
plementierung. Master’s thesis, University of Saarbriicken, 2000.

Index

a.out, 43
access control, 13, 57
control, 13
decision facility, 57
enforcement facility, 57
hierarchical, 61
list, 39, 58
matrix, 39
mechanism, 39, 115
model, 39, 115
policy, 38, 115
protect, 13
address space, 53, 115
flush, 54
grant, 54
map, 54
separated, 46
analysis
security requirements, 33
application framework, 1
autoconf, 86
automake, 86

BIOS
password, 37
booting, 37

clans and chiefs, 54

class
ACDF, 57
ACEF, 57
AuthenticationManager, 88
Block, 87
ConfidentialityPager, 65
ConsoleManager, 90
ContentCertificate, 76
ContentDescription, 75
Converter, 44
DependencyDB, 42
DerivationService, 42, 76
Device, 48
DiskPager, 65
DisplayManager, 69, 89
EventHandler, 99
Heap, 79, 87

Installer, 43
IntegrityPager, 65
Interrupt, 87
InterruptHandler, 87
Keyboard, 79
KeyboardManager, 88, 90
KeyboardStub, 90
Loader, 42, 73
LoaderManager, 77
MainPager, 64
Memory, 87
Messageld, 55
NamingService, 59, 89
Pager, 80
RandomManager, 77
Router, 48, 71
ServiceDB, 89
SubsystemManager, 42
TaskManager, 73
TextConsoleStub, 89
Thread, 80
Threadld, 59
ThreadManager, 80
Version, 38
VirtualNetworkDevice, 48
client OS, 1, 33, 115
common criteria, 15, 33, 115

class, 15

communication, 16

cryptographic support, 16

identification and authentication,

19
privacy, 23
protection of the TSF, 24
resource utilization, 27
security audit, 16
security management, 21
TOE access, 28
trusted path/channels, 29
user data protection, 17
component, 15
family, 15
content-certificates, 76
current, privilege level, 68

124

INDEX

data flow diagram, 6
database, 34
DMA, 37

ELF, 43

Fiasco, 53, 115
file system, 34
function tree, 5

GRUB, 97
hotkey, 90

I/0, 54

memory mapped, 36

port, 36, 54

separated address space, 36
independence

subsystems, 35
information flow, 40

control, 40
covered, 40
interrupt, 37
IPC, 54
kernel, 6
L4-Linux, 4, 53
library, 34
shared, 46
static, 46
memory

automatic, 115
dynamic, 65, 115
global, 115
heap, 115
static, 117
message redirection, 57
mechanism, 40, 116
microkernel, 7, 116
mpages, 65
multiboot header, 43

naming service, 116
network adapter, 47

object-oriented
analysis, 5, 116
design, 5, 116
implementation, 5, 116
programming, 5, 116

package
AccessControl, 38, 57, 88

125

CommunicationPath, 46, 71, 93
Crypto, 44
DerivationService, 75
DisplayManager, 69
InformationFlowControl, 40
Installer, 75
KeyManagement, 44, 93
Loader, 77
MemoryPager, 64
PortManager, 68
Random, 77
ResourceManagement, 41, 63, 89
Subsystem, 38
SubsystemAuthentication, 70
SubsystemManagement, 41, 43, 73
TrustedGUI, 71
TrustedPath, 44, 46, 91
UserAuthentication, 46
Utilities, 79

packages
TrustedGUI, 92

pattern, 6, 116
analysis, 115
design, 115
implementation, 115

PDA, 34

PERSEUS,; 1

persistence, 34, 116
memory pages, 34

personal digital assistent, 2

ppages, 65

program control structure, 6

protected domain, 116

protection profile, 15, 116

proxy, 55, 77

reference manual
generation, 86
reference monitor, 57, 116
resource allocation, 54
resource manager, 41
role, 12, 13, 116
admin, 14
anonymous, 13
security-admin, 14
user, 14
RT-Linux, 4

secure applications, 1

secure environment, 1, 116

secure platform, 1

security function, 116
policy, 116

security target, 15, 116

126 INDEX

service, 116

session, 7, 116
management, 7

standard template library, 86

STL, 86

stub, 35

subject, 117

subsystem, 7, 117
independence, 7
integrity, 7

SURE, 4

system definition, 15, 117

system requirements specification, 9, 117

target of evaluation, 15, 117
security functions, 117
security policy, 117

scope of control, 117

task, 54
limited number, 37

threads, 54

UML, 5
package, 38
unified modeling language, 5, 117
use case, 10, 117
analysis, 29
user manual, 97

virtual hardware layer, 35, 63
virtual network device, 72

windowmanager, 69

xclient, 69
xserver, 69, 117
xwindows, 47, 69

