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SSL is the de-facto standard today for securing end-to-end transport on the Internet. While the
protocol itself seems rather secure, there are a number of risks that lurk in its use, e.g., in web
banking. However, the adoption of password-based key-exchange protocols can overcome some of
these problems. We propose the integration of such a protocol (DH-EKE) in the TLS protocol,

the standardization of SSL by IETF. The resulting protocol provides secure mutual authentication
and key establishment over an insecure channel. It does not have to resort to a PKI or keys and
certificates stored on the users computer. Additionally, its integration in TLS is as minimal and
non-intrusive as possible.
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1. INTRODUCTION

The Secure Socket Layer (SSL) protocol [Freier et al. 1996] is the current de-facto
standard for securing end-to-end transport over the Internet. The presence of SSL
in virtually all web browsers has led to its widespread use, also in application re-
quiring a high level of security such as home banking. Whereas early versions
of SSL contained a number of flaws and shortcomings, the analysis of the latest
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version 3.0 has revealed only a few minor anomalies [Wagner and Schneier 1996;
Mitchell et al. 1998]. SSL was further refined in the Transport Layer Security (TLS)
protocol [Dierks and Allen 1999], the standardization effort of the Internet Engi-
neering Task Force (IETF), and now seems to provide a reasonable level of security.1

Currently, all standard methods for authentication in TLS rely on a public-key
infrastructure (PKI). While this is suitable for many cases it might not suit en-
vironments where the infrastructure is “light-weight” (e.g., disk-less workstations,
user-to-user authentication), situations where a system has to be bootstrapped from
scratch, or contexts where user mobility is required.

Furthermore, current cipher suites also pose their own risks, prominently illus-
trated in following example: Over the past few years many banks have built home-
banking applications for the web. For their security these applications rely mainly
on the integration of SSL into the web browsers. As issuing client certificates se-
curely and reliably is quite involved, most of them use SSL for server authentication
only. They set up a secure channel from the browser of the bank customer to the
server and then ask the customer to authenticate herself by typing her password
into a simple web form. However, in such a setup the authentication of the cus-
tomer is not directly tied to the secure channel and, in fact, the security cannot be
guaranteed if the customer does not explicitly verify the connection before entering
her password.

As illustrated in Figure 1, it is not sufficient to observe that the lock turns golden
and locked to verify that there is a secure connection. The bank customer also has
to check that the certificate identifies the right bank and is issued by a Certification
Authority (CA) that is appropriate in this context to make sure that the connection
is to the right entity. This is a non-trivial task as, for example, Netscape contains by
default more than 70 different root certificates. Moreover, the assurance provided
by the corresponding certification procedures is difficult to figure out, and varies
from a few with high guarantee to most with virtually none.2 To counter possible
attacks the customer might even have to verify the fingerprint of the CA itself. If
the customer fails to do that properly she is highly susceptible to a man-in-the-
middle attack and to a potential theft of her money. This seems to put too high a
burden on the average customer. A reasonable system should be fool proof.

Use of one-time-use transaction authorization numbers (TAN) only marginally
improves this situation. Using client side certificates helps but complicates the
setup and requires proper protection of the client’s keys, a difficult task given the
(in)security of the common operating systems available today.

The above-mentioned problems related to a PKI are inherent weaknesses of
general-purpose applications such as web browsers. Multiple (and fundamentally
different!) trust domains (CAs) have to co-exist, and an application cannot know
and enforce which policies are appropriate for a particular context. However, these
issues are not intrinsic problems of SSL and will not arise with the password-based

1Note that the risk of the recent, very practical attack of Bleichenbacher [1998] on the RSA-
based cipher suites can be reduced by careful implementations. The adoption of Version 2.0
of PKCS #1 [Kaliski and Staddon 1998] and its new encoding method EME-OAEP based on work
by Bellare and Rogaway [1995a] should thwart such an attack completely.
2See Section 5.5.3 for further discussion on problems arising from the certificate management of
web browsers.
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4. Verify Certification 
    Authority
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2. Verify URL
Password
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Fig. 1. One-way authenticated TLS channels: The end-user’s heavy burden . . .

Password

Enter TLS/DH−EKE password for user
steiner@telebank1.ubs.com

Fig. 2. TLS channels with password-based key-exchange: Minimal and fool proof . . .
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protocols presented in the following, regardless of the application. If we integrate
such password-based key-exchange protocols in web browsers we can overcome the
problems mentioned above: A password entered in the corresponding pop-up win-
dow (see Figure 2) is guaranteed not to leak to any remote3 attacker.

The recent addition of cipher suites based on Kerberos [Medvinsky and Hur 1999;
Kohl and Neuman 1993] eliminates the requirement of a PKI. Unfortunately, Ker-
beros is not really light-weight (e.g., there is no real structural difference from a
PKI) and, more importantly, it is vulnerable to dictionary attacks when weak pass-
words are used [Wu 1999; Bellovin and Merritt 1991; Morris and Thompson 1979;
Gong et al. 1989].4 Given the human nature, this cannot be excluded. Pro-active
password checking [Bishop and Klein 1995] can help only to a limited degree: On
the one hand, the choice of passwords has to be easy and unrestricted enough to
make it possible for users to remember their passwords (without having to write
them down). This limits the possible entropy in such passwords. On the other hand,
computing power still grows dramatically and makes dictionary attacks possible on
larger and larger classes of passwords.

Luckily, there is a class of authenticated key-exchange protocols that are resistant
to (off-line) dictionary attacks even when used with memorizable and potentially
weak secrets, i.e., passwords. They do not have to be backed by any infrastructure
such as a PKI. Assuming proper handling of online dictionary attacks, which are
usually detectable, these systems are at least as secure as other systems based on
strong public or shared keys. To substantiate the “at least” we note that in reality
most of these other systems rely also on passwords somewhere at the user end: The
key ring in PGP [Zimmermann 1995] and secret keys related to client certificates in
browsers are password encrypted and are even vulnerable to undetectable off-line
dictionary attacks once the key files leak (e.g., because of backups)! The security
of password-based key-exchange protocols relies only on two assumptions: The in-
tegrity of the underlying hardware and software, and the availability of a reasonably
good source of randomness. But this, in essence, is the minimum requirement for
any secure system.

Therefore, it seems quite useful to enrich the set of current TLS cipher suites with
a password-based protocol and to reduce the risks explained above. In the following,
we describe the integration of an improved version of the Diffie-Hellman Encrypted
Key Exchange (DH-EKE) [Bellovin and Merrit 1992] into TLS. The new cipher
suite provides mutual authentication and key establishment with perfect forward
secrecy over an insecure channel and, limits the damage in case an attacker gains
access to the server’s databases. The integration into TLS is as non-intrusive as
possible and, with some optimizations, retains the 4-round handshake overhead of
TLS.

The structure of the remainder of this article is as follows. In Section 2 we explain
the underlying cryptographic protocol, a modified version of DH-EKE. In Section 3
we give a brief overview of the TLS flows and state some criteria for the integration

3Of course, Trojan horses such as the ones described by Tygar and Whitten [1996] can open
another door for attackers, but this problem is orthogonal to the issues discussed in this article.
4Note that this vulnerability also applies to the use of Kerberos in MS Windows 2000 as far as
one can tell from Chappell [1999] and other publicly available information.
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Client C

(password ����� )
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x
R
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−−−
Ê ���
	 (hx)
−−−−−−−−−−−−−−→

y
R
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kmstr ← (hx)y,
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R
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←−
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−−−−−−−−−−−−−−−−−

kmstr ← (hy)x,

C2
R
← domain(E)

−−−
Ekmstr(C1, C2)
−−−−−−−−−−−−−−→

verify response

←−−−
Ekmstr(C2)
−−−−−−−−−−−−−−

verify response

Fig. 3. DH-EKE

of a new cipher suite. In Section 4 we describe our new cipher suite in detail. We
then give rationales for our choices in Section 5, and conclude in Section 6.

2. DH-EKE

2.1 Cryptographic Preliminaries

Let us first introduce the underlying algebraic structure and some notation.
The central parts of the following protocols are computed in a cyclic multiplicative

group  ∗
p, with p prime and q a large prime divisor of ϕ(p) = (p−1). Let n = dlog2 pe

and m = dlog2 qe be the number of bits of p and q, respectively. Typical values are
768, 1024 or 2048 for n and 160 or 320 for m. Let h be an (arbitrary) generator
(primitive root) of  ∗

p. Furthermore, let g be defined as h(p−1)/q (mod p). Note
that g is a generator of the (unique) subgroup G of order q. Additionally, let g∗ be
a second generator of the subgroup G. For algorithms on finding primitive roots
and efficiently computing group operations in multiplicative groups we refer the
reader to other sources, e.g., the excellent book of Menezes et al. [1997].

Further commonly used notation is as follows: E and Ê denote an ordinary
and a password-based symmetric cipher, respectively; Gi denotes a key-derivation
function; and Hi refers to a pseudo-random function.

2.2 Exponential Key Exchange

In 1992 Bellovin and Merritt published a family of methods called Encrypted Key
Exchange (EKE) [Bellovin and Merrit 1992]. These protocols provide key exchange
with mutual authentication based on weak secrets (e.g., passwords). They are very
carefully designed to prevent the leakage of weak secrets and to withstand dictionary
attacks.

The simplest and most elegant of the methods is DH-EKE. In DH-EKE a weak
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Client C

(password ����� )

Server S

(password � � � )

x
R
← � p−1

kauth ← H1(
�����

, IDC , IDS )

−−−−−−−
Êkauth

(hx)
−−−−−−−−−−−−−−−−−−→

y
R
← � q

kauth ← H1(
� � � , IDC , IDS )

kmstr ← (hx)(y((p−1)/q))

kconf ← G1(kmstr)

ksess ← G2(kmstr)

←−

gy, MACkconf
(“1”, Êkauth

(hx), gy)
−−−−−−−−−−−−−−−−−−−−−−−−−−

kmstr ← (gy)(x (mod q))

kconf ← G1(kmstr)

ksess ← G2(kmstr)

abort if MAC not OK

−−

MACkconf
(“2”, Êkauth

(hx), gy)
−−−−−−−−−−−−−−−−−−−−−−−−→

abort if MAC not OK

Fig. 4. Refined DH-EKE. (Recall that g := h(p−1)/q)

secret P is used to encrypt two randomly chosen half-keys of a Diffie-Hellman
key exchange (DH) [Diffie and Hellman 1976], i.e., hx (mod p) and hy (mod p).The
protocol is shown in Figure 3. Note that all exponentiations in this figure as well
as in all following ones are performed in the underlying finite cyclic group  ∗

p, i.e.,
computed modulo p. However, to prevent cluttering the figures we omit explicit
(mod p)s.

The session key computed by the client and the server5 is hxy (mod p). This key
is cryptographically strong regardless of the strength of the password as long as x
and y are secret and cryptographically strong random numbers.

2.3 Refined DH-EKE

Various ways exist to optimize the number of encryptions and flows. However, these
optimizations as well as the design of the encryption process and the choice of the al-
gebraic group have to be done very carefully to prevent various attacks [Bellovin and Merrit 1992;
Steiner et al. 1995; Jablon 1996; Patel 1997]. In the following we will describe the
refined protocol forming the basis of our integration into TLS in more detail. Fig-
ure 4 shows an overview of the protocol.

As shown by Steiner et al. [1995], the number of flows and basic message ele-
ments can be minimized to three and four, respectively. It is also possible to omit

5DH-EKE is a-priori symmetric and insofar is not limited to a client-server relation. However,
such a scenario is the most likely one and will be specifically addressed later, e.g., in Section 2.6.
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the second encryption with the password.6 Furthermore, the encryptions in the
confirmation flows are replaced by message authentication codes (MAC). This is
cleaner in terms of functionality and more efficient. We also do not use the Diffie-
Hellman key kmstr directly as confirmation and session key but derive two separate
and independent keys using the key-derivation functions Gi: a confirmation key
kconf to provide key confirmation and a session key ksess for a higher-level proto-
col. This allows modular protocol composition and prevents protocol interference
attacks, i.e., no interference is possible between the messages of the key-exchange
protocol and any higher-level protocol, regardless of its use of the session key ksess.
Finally, instead of using the password directly as encryption key, we use a password
authentication key kauth derived from the password and the identifiers of both par-
ties using the pseudo-random function H1. This guarantees, with high probability,
pair-wise unique encryption keys and eliminates the risk of interference between a
client’s (potentially parallel) sessions with multiple servers, even if this client reuses
the same password with several of these servers.

2.4 Password Encryption

As mentioned, the design of the encryption process is a delicate issue and strongly
depends on the choice of the algebraic group.

The encryption process ÊP (·) requires two properties to prevent an adversary
from verifying candidate passwords using an observed encryption ÊP (z): First,
the encryption function should produce ciphertexts that contain no redundancy,
and the range of the encryption function has to be the same regardless of the key
chosen. Second, given a ciphertext, the possible corresponding plaintexts have to
be unpredictable and close to uniformly distributed over the input domain of the
encryption function.

The first condition is fulfilled by stream and block ciphers performing a per-
mutation on the input block. The second condition is fulfilled by guaranteeing
that the encrypted element is uniformly and randomly chosen from the underlying
group and by encrypting it with the two-step encryption described in the next two
paragraphs.

2.4.1 Encryption of Elements in  ∗
p. Unfortunately, it is not secure to just map

an element z of  ∗
p to an integer in {1, . . . , p − 1} and to naively encrypt it with a

standard stream or block cipher. The domain of these ciphers is usually a power of
2, and this can lead to following dictionary attack: Let len be the block length of a
block cipher and let l be the smallest integer such that l·len is greater than n, the bit
length of p. Furthermore, let r :=(p−1)/2l·len be the ratio of the number of possible
group elements over the size of the domain of the cipher. An attacker observing
an encryption ÊP (z) has a probability of (1 − r) to reject a wrong password guess
by decrypting ÊP (z) with the guess and recovering an element in the illegal range
{0, p, p + 1, . . . , 2l·len−1}. Assuming that the attacker can observe t runs of the
protocol, the probability of successfully rejecting a password guess becomes (1−rt).
When l · len is not close to n, this value approaches unity extremely quickly. If we
use a stream cipher the effect is smaller but still considerable.

6However, note that omitting the first rather than the second password encryption would trivially
lead to a dictionary attack!
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We solve this problem as follows: First, we expand the element z uniformly from
an n-bit number to a random (n + α)-bit number b. To achieve that, we choose
a random integer c ∈ {0, . . . , b(2α+n)/pc − 1} and compute b = z + cp. Second,
we pad b with ((l · len) − (n + α)) random bits if (n + α) is not a multiple of the
block length, and encrypt the resulting value. On decryption, we simply strip off
any padding and get z by reducing the retrieved value b modulo p.

On average, when expanding with 1 bit we decrease the proportion of the invalid
range with respect to the complete range by half. Therefore, we also reduce the
chances an attacker has by half. Let us define tmax as an upper bound for the
number of protocol runs with a given password and 2−k as the maximally tolerable
probability that an attacker can reject an (incorrect) password guess after having
observed some (i.e, at most tmax) protocol runs. Then the number of required
expansion bits is α = − log2 (1 − (1 − 2−k)1/tmax) ≈ k + log2(tmax).

For the actual choice of α we refer the reader to Section 4.4, where we discuss
the concrete instantiation of the encryption process in the context of TLS.

2.4.2 Encryption of Elements in the Subgroup G. As mentioned above, there
should be no structure in the decryption as otherwise it might be open to attacks.
Previous papers on DH-EKE commonly assumed that this means that we cannot
operate in a (much more efficient) cyclic subgroup G but have to work in the
entire group  ∗

p (e.g., we need a primitive root as base for the exponentiations).
Encrypting elements of the subgroup would lead to following attack: The attacker
chooses a candidate password, uses it to decrypt an observed encrypted half-key hx,
and rejects the password if the decrypted element is not an element of the subgroup.
If the password guess was wrong the likelihood that the decrypted element is not
an element of the subgroup is high and therefore the attack will be very effective.

However, if we intend to achieve semantic security in the sense that a valid
session key should be indistinguishable from a random key, we encounter a problem.
If we do not resort to random oracles [Bellare and Rogaway 1993], the weakest
cryptographic assumption we can rely on is the hardness of the Decisional Diffie-
Hellman problem (DDH). It is also clear that this cannot be done7 in  ∗

p but only
in a prime-order subgroup of  ∗

p. This means that the security proof as found in the
Appendix of Steiner et al. [1995] does not work for DH-EKE as originally proposed
by Bellovin and Merrit [1992]. To make the proof work we have to modify the
protocol such that it operates in a subgroup.

Luckily, the first observation that we cannot operate in subgroups is not com-
pletely correct: While it is true that we cannot encrypt elements of the subgroup
with the password, it nevertheless does not prevent us from computing in the sub-
group. The trick is simple. Instead of encrypting an element of the subgroup we
randomly send one of the ((p − 1)/q)-th roots contained in the group. Assuming
uniformly and randomly chosen exponents and roots, we will obtain a uniform dis-
tribution over  ∗

p. Better still, as the sender actually chooses the element there is
no need to compute roots and randomly select one of them: It is sufficient that
the sender picks a random element in  ∗

p and the receiver constructs the element of

7The order of elements in
�

∗
p leaks information that can be used to distinguish between

(hx, hy , hxy) and a triple of random elements of
�
∗
p with high probability.
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the subgroup by raising it to the power of (p − 1)/q. Note that following equality
always holds: hx((p−1)/q) ≡ (h(p−1)/q)x ≡ gx ≡ gx (mod q) (mod p).

Therefore not only can we retain semantic security but we also improve efficiency
as now only two of the four exponentiations require long exponents. Further per-
formance improvements can be obtained if we choose h and/or g to be small. This
will speed up exponentiations without any loss of security.

2.5 Subgroup Confinement

One concern for protocols based on discrete logarithms are subgroup confinement
attacks [Lim and Lee 1997]: An attacker might send elements of small order to
either reduce the possible key space for impersonations or attacks on the password,
e.g., if the attacker sends 1 instead of gy then the key will be 1 regardless of
what the other (honest) party chooses as random exponent!8 This attack can be
prevented by having the receiver of the unencrypted half-key gy verify the order
of the element. Verification of the order of decrypted values is not necessary: An
attacker can either guess a password and encrypt an element of small order or send
an arbitrary random value. In the unlikely case that the password guess was correct
then obviously there is no point of encrypting an element of small order in the first
place. Otherwise, given the pseudo-random nature of the encryption function, a
decryption will yield a random element regardless whether the attacker has chosen
a wrong password or an arbitrary value. But if ϕ(p) has large prime factors it
is highly unlikely that a randomly selected value decrypts to an element of small
order.

If we choose  ∗
p such that ϕ(p)/2 would contain only prime factors of large size,

i.e., they are all of at least m bits, we could improve the check for elements of small
order even further. In such groups it is sufficient to test that y2 (mod p) 6= 1 to
verify that y has larger order [Lim and Lee 1997].

2.6 Reducing the Risk of Stolen Server Databases

As an additional precautionary measure we also reduce the risks resulting from
the loss or theft of the user database from the server’s machine. In the origi-
nal proposal by Bellovin and Merrit [1992] the server had to store the password.
This means that an attacker getting access to the server’s database can imme-
diately masquerade as both client and server. Extensions to EKE such as A-
EKE [Bellovin and Merrit 1993], B-EKE [Jablon 1997] and SRP [Wu 1998] store
only a (salted) hash of the password on the server side, reducing the risk of client
impersonation to a dictionary attack, even when the server’s database has leaked.
While we argue that dictionary attacks are always feasible and therefore the pass-
word could eventually be revealed to an attacker in possession of the server’s
database, having such a second line of defense is nevertheless desirable.

For this reason we integrated the idea of B-EKE in our final protocol as shown
in Figure 5. Instead of the password, the server now stores a password verifier v
(:=gkvrfy (mod p)) and a password authentication key kauth, where kvrfy and kauth

are derived from the client’s password using (different) one-way functions. kauth is

8Note that in this case the attacker can also trivially compute the necessary MAC in the second
flow as kconf = G1(1) is known.
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Client C

(password � ��� )

Server S
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H2( ���
	 ,IDC ,IDS )
∗ ,

kauth :=H1(
� ��� , IDC , IDS ))

x
R

← � p−1

kauth ← H1(
� ��� , IDC , IDS )

kvrfy ← H2(
� ��� , IDC , IDS )

−−−−−−−
Êkauth

(hx)
−−−−−−−−−−−−−−−−−−−−→

y, y′ R
← � q

V ← vy′

kmstr ← H3((h
x)(y(p−1/q)), V )

kconf ← G1(kmstr)

ksess ← G2(kmstr)

←−−−

gy, g
y′

∗ ,

MACkconf
(“1”, Êkauth

(hx), gy, g
y′

∗ )
−−−−−−−−−−−−−−−−−−−−−−−−

V ← (gy′

∗ )kvrfy

kmstr ← H3((g
y)(x (mod q)), V )

kconf ← G1(kmstr)

ksess ← G2(kmstr)

abort if MAC not OK

−

MACkconf
(“2”, Êkauth

(hx), gy, g
y′

∗ )
−−−−−−−−−−−−−−−−−−−−−−−−−−→

abort if MAC not OK

Fig. 5. Refined DH-EKE — Optimized for case of server compromise

used to encrypt the DH half-keys as before. Additionally, the client demonstrates

its knowledge of kvrfy (and hence the password) by being able to compute (gy′

∗ )kvrfy

(mod p).
Using the strong DH-key gxy as key to the pseudo-random function H3 com-

pletely hides any information on the password, even if gy′

∗ is maliciously chosen or
kmstr were available to an attacker. We consider the added costs of the additional
exponentiations (which are all with small exponents) worthwhile. However, it would
be straightforward to make the use of B-EKE optional and to allow performance
critical environments to trade off the risk of stolen server databases with improved
performance.

A related speed improvement would be to choose the generators g and g∗ identical
and reuse y for y′: This retains the security but saves one exponentiation at the
server side. The reason for not doing this by default is that with such a modification
the verifier g∗ would fix the algebraic group used for the key generation. Keeping the
two separate allows the server to react to increased security requirements regarding
key lengths by choosing a larger (stronger) group for the DH key without having
to go through a password renewal. Note that keeping the verifier in a potentially
weak group might be tolerable as it merely is an independent, second line of defense.
Note also that servers can use the above improvement transparently, even in the
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Client C Server S

propose acceptable cipher
suites

−−−−−−
ClientHello
−−−−−−−−−−−−−−−−−−→

choose cipher suite and
prepare key-exchange

parameters

←−

ServerHello,

Certificate*,

ServerKeyExchange*,

CertificateRequest*,

ServerHelloDone
−−−−−−−−−−−−−−−−−−−−−−−

verify parameters and
prepare own key-exchange
and verification parameters

−

Certificate*,

ClientKeyExchange,

CertificateVerify*,

[ChangeCipherSpec],

Finished
−−−−−−−−−−−−−−−−−−−−−−−→

complete authentication of
client (if possible)

←−

[ChangeCipherSpec],

Finished
−−−−−−−−−−−−−−−−−−−−−−−

complete authentication of
server

←−−−
ApplicationData
−−−−−−−− −− −→

Fig. 6. Overview of TLS flows. (Situation-dependent messages are flagged with an asterisk.)

current proposal.

3. TLS

3.1 Overview

TLS is composed of two layers: the TLS Record Protocol and the TLS Hand-
shake Protocol. The Record Protocol encapsulates higher-level protocols (such
as HTTP [Berners-Lee et al. 1997]) and handles the reliability, confidentiality and
compression of the messages exchanged over the connection. The TLS Handshake
Protocol is responsible for setting up the secure channel between server and client,
and provides the keys and algorithm information to the Record Protocol. The
changes required in our integration of password-based protocols are not relevant to
the Record Protocol. Therefore we will not discussion it further.

Figure 6 gives an overview of the flows of the Handshake Protocol. The main
purpose of the first message, ClientHello, is to send a random challenge to guar-
antee freshness and to tell the server which cryptographic algorithms are supported
by the client.

Based on this proposal the server will pick a set of algorithms, the cipher suite.
As an illustrative example, let us assume that the cipher suite TLS DHE DSS WITH -

DES CBC SHA was chosen. This means that the session key will be based on a DH-key
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exchange using ephemeral parameters, DSS is the signature algorithm used, and the
security on the record layer will be based on DES in CBC mode and SHA-1. The
cipher suite chosen is stored in the ServerHello message together with another
random challenge to help assure the server of the freshness of the protocol run. If
server authentication is required the server sends its own certificate in Certificate.
Depending on the cipher suite chosen the server also sends the ServerKeyExchange
message. This message contains keying data required for the key exchange. In our
example it would hold the server’s ephemeral DH half-key gx signed with the server’s
signing key. Furthermore, a list of accepted certificate types and CAs is sent as
part of the CertificateRequest if client authentication is required. Finally, the
server marks the end of the turn by sending the ServerHelloDone.

In the next step the client verifies the received data. The client prepares its
own contribution to the key generation, e.g., the DH half-key gy, stores it in
ClientKeyExchange and derives the premaster secret from this and the server’s in-
put contained in ServerKeyExchange. In our example this would mean computing
the DH key gxy. The premaster secret is then hashed together with two previously
exchanged challenges to form the master secret . The master secret is, as its name
implies, the main session key, and all cryptographic keys used for encryption or
integrity are derived from this master secret using key derivation functions. The
client now sends the ClientKeyExchange and, if required by the cipher suite, also
CertificateVerify and Certificate for client authentication to the server. The
client then issues a ChangeCipherSpec to the Record Protocol, instructing it to use
the newly negotiated keys and algorithms. Finally, the client sends the Finished

message, i.e., a message authentication code (MAC) on the previously sent messages
using a newly derived key.

The server derives the premaster secret and the master secret from the data
contained in ClientKeyExchange and its own inputs. If client authentication is
enabled and CertificateVerify is present, the server verifies this message to au-
thenticate the client. Finally, verification of the Finished message will assure the
server of the integrity and freshness of the request.

The server then sends a similar Finished message to the client. This allows the
client to verify the authenticity of the server and the freshness of the keys used. At
this point the client can start sending application data to the server.

3.2 Adding New Cipher Suites

Before presenting the integration of DH-EKE, let us look at the requirements
and constraints of integrating a new cipher suite in general. The TLS specifica-
tions [Dierks and Allen 1999] do not explicitly mention what is recommended or
disallowed in the integration of a new cipher suite. But it is clear that such an
integration should be as least intrusive as possible. Examining the data structures
defined reveals that the ideal places to adjust TLS for new cipher suites are the
ServerKeyExchange and ClientKeyExchange messages. They are already variant
records and can be extended with a new element rather transparently. We can also
approach the problem from the other side and look at the hard constraints. For
compatibility reasons we should of course not alter messages that are sent before
an agreement on a cipher suite has been reached. This means in particular that we
should refrain from modifying ClientHello. As we will see later this has impor-



Secure Password-Based Cipher Suite for TLS · 13

Client C

(password ����� )

Server S

(v = g
kvrfy
∗ , kauth)

−−−−−−−−−
ClientHello
−−−−−−−−−−−−−−−−−−−−→

choose y, y′
∈R � q

←−−−−

ServerHello,

ServerKeyExchange(gy , g
y′

∗ ),

ServerHelloDone
−−−−−−−−−−−−−−−−−−−−−−−−−

derive kauth and kvrfy from
� ��� and choose

x ∈R � p−1

−
ClientKeyExchange(Êkauth
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Fig. 7. Overview of flows of DH-EKE/TLS.

tant and unfortunate consequences. Further desirable properties are the reuse of
cryptographic primitives already specified by TLS and a minimized setup time by
keeping the number of flows and the cost of computation low.

4. INTEGRATION OF DH-EKE IN TLS

Let us now turn our attention to the integration of DH-EKE. Figure 7 gives an
overview of the flows assuming that DH-EKE/TLS was among the proposed cipher
suites in ClientHello and was selected by the server. The arguments of the TLS
messages contain the security-critical protocol information in a slightly abstracted
and simplified form, e.g., Finished is a more complicated function in reality yet
for our purpose it is sufficient to consider it as a message authentication code.

At first glance, it looks like a straightforward replacement of the ephemeral DH
key exchange authenticated by DSS signatures used as an example when explaining
TLS in Section 3.1 by the DH-EKE protocol specified earlier in Section 2 and
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shown in Figure 5. However, there a few subtle differences: Some TLS messages
from Figure 6 are missing; it is the server who initiates the DH-EKE key-exchange
protocol, in contrast to the protocol given in Section 2; the protocol itself is slightly
changed; and the order of the client’s and server’s Finished messages is swapped.

The server’s Certificate and CertificateRequest messages and the client’s
Certificate and CertificateVerify messages are omitted in Figure 7 for ob-
vious reasons: No PKI is required and thus also no certificates. Note that these
messages are specified as optional in the TLS protocol; therefore, omitting them is
permissible.

The remaining three differences are all due to the problem of transferring identity
information and to the subtle issues of dictionary attacks. However, let us first look
at the protocol in more detail and return to these issues later, namely in Section 5.1.

4.1 Setup

The client first chooses a password pwd. Then, the client derives a password
authentication key kauth = H1(pwd, IDC , IDS ) and computes the password verifier

v = g
kvrfy

∗ with kvrfy = H2(pwd, IDC , IDS ). Finally, v and kauth are sent securely to
the server and stored together with the client’s name in the server’s user database.

The functions H1(z, w, w′) and H2(z, w, w′) are computed as the first m bits of
PRF (z, “password authentication key”, w|w′) and PRF (z, “password verifier”, w|w′),
respectively. PRF is the pseudo-random function as defined in Section 5 of Dierks and Allen [1999].
It takes as input a secret, an identifying label and a seed, and produces an output
of arbitrary length.

4.2 Protocol Flow Processing

In the following, we assume that in ClientHello the client proposes some of the
DH-EKE cipher suites (see Figure 8 in the Appendix) and the server agrees on
one of them. We also omit all standard processing as defined in TLS and refer the
reader to Dierks and Allen [1999]. The definition of the new or modified TLS data
structures (always written in typewriter font) mentioned below can be found in
the Appendix in Figure 9.

1. Client → Server The client prepares the ClientHello as usual.

2. Server → Client The server chooses y ∈R  q and computes gy (mod p). Ad-

ditionally, the server also chooses y′ ∈R  q and computes gy′

∗ (mod p).

The server completes the ServerDHEKEParamsfield in ServerKeyExchangewith

gy and gy′

∗ . If the server’s group parameters are not a priori fixed, the server
also prepares ServerDHParamsProof to allow optimized parameter verification
for the client as described in Section 4.3. The server sends the ServerHello,
ServerKeyExchange and ServerHelloDone messages to the client.

3. Client → Server The Client verifies the parameters of the group: If they are
not installed and well-defined, the client performs the tests as outlined in Sec-
tion 4.3.

Then, the client verifies that the gy and gy′

∗ contained in ServerKeyExchange

are of the right size and order, i.e., (gy)q (mod p) = 1 ∧ gy (mod p) 6= 1. The
client aborts if the above conditions are not fulfilled.
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The client (software) ask the user for her password and derives the authen-
tication key as kauth = H1(pwd, IDC , IDS ) and the verifier key as kvrfy =
H2(pwd, IDC , IDS ). The client chooses x ∈R  p−1 and computes hx (mod p).
Then, the client encrypts hx as defined in Section 4.4, enters the resulting value
Êkauth

(hx) as well as the user’s identity in the ClientDHEKEParams field of the
ClientKeyExchange message and sends the message to the server.

4. Server → Client The server extracts the identity of the client from the Client-
KeyExchange message and retrieves the client’s record from the user database.
The server verifies that the account is not locked and decrypts the client’s half-
key hx as defined in Section 4.4 using the authentication key kauth stored in
the record.
The server computes the premaster secret pms as H3((h

x)(y(p−1/q)), vy′

) (with
H3(z, w) defined as PRF (z, “DH premastersecret”,w) and generates the server’s
Finished message as defined in the TLS specifications, i.e., a message authen-
tication code over all previously sent handshake messages, and idealized in
Figure 7 as MACGi(pms)(. . . ). The server performs a ChangeCipherSpec and
sends the Finished message to the client.

5. Client → Server The client computes pms = H3((g
y)(x (mod q)), (gy′

∗ )kvrfy) to
obtain the premaster secret and verifies the server’s Finished message. If the
verification fails, the client aborts.
The client generates the Finished message (again a MAC over all previously
exchanged handshake messages), proceeds with the ChangeCipherSpec and
sends the Finished message to the server. Note that contrary to the standard
case the client can start sending data immediately after the Finished message
(and thus retains the original handshake overhead of four flows).

6. Server → Client The server verifies the client’s Finished message. If the ver-
ification fails, the server aborts, increments the ‘potential online attack’ counter
in the client’s database record and locks the account if the ‘potential online at-
tack’ counter reaches a threshold (a reasonable number for the threshold might
be five. Note that in addition more elaborate policies with exponential retry
delays might be used). If the verification is correct, the ‘potential online attack’
counter is updated (exact procedure depends on local policy: Possibilities are
setting it to 0, decrementing it by 1, etc.).

Note: To reduce the risk of password exposure, implementors are advised to
throw away (zero out) all traces of the password and all critical random values used
(e.g., the DH parameters x, y, gy and the premaster secret) as soon as possible.

4.3 Group Verification

The group parameters p, q, h and g should preferably be fixed at system startup.
If not, they may be chosen by the server and passed to the client in ServerKey-

Exchange. In this case, the client has to verify them. It is of particular importance
to make sure that p and q are prime, n and m are sufficiently large and h and
g are indeed generators of their respective group. As in the ephemeral case the
parameters might be chosen by an adversary, it is not possible to use optimization
techniques that drastically reduce the number of Miller-Rabin tests such as the
one described in Table 4.3 of Menezes et al. [1997]. Instead we can only rely on
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1/4t as the upper bound of the probability that a candidate is prime after t Miller-
Rabin tests: Therefore, at least 40 to 50 tests per prime, i.e., q and p, are required
to render the probability negligible that we accept a composite number falsely as
prime. The test bases a should be chosen at random and not be predictable by the
adversary.

These tests are rather expensive, in particular if we assume light-weight clients.
A more efficient way of verification is to let the server send further verification
information together with the group parameters. This can help establish the cor-
rectness of the parameters more efficiently. The approach chosen here is quite
simple. To show the randomness of the prime selection, the server sends, together
with the prime, also a pre-image of it taken from a one-way function, i.e., the
ServerDHParamsProof field. This requires only a small change in the server’s prime
generation process but should prevent an adversary from choosing weak or special
primes. Therefore this randomization allows the use of the optimization techniques
described in Menezes et al. [1997], and the number of Miller-Rabin tests on the
client side can be reduced down to at most five tests with the given range of n as
defined above.

4.4 Encryption using Weak Secrets

In Section 2.4 we described the principles of the encryption function ÊP (z). In
the following, we instantiate that function based on building blocks that already
exist in TLS. On input P , a weak secret, and z, an element of  ∗

p, we perform the
following steps:

Key Derivation We derive the encryption key k as H0(P, salt). The input param-
eters are the weak secret P and the concatenation of the two challenges found
in ClientHello and ServerHello as salt. The function H0(z, w) is computed
as the first keylength bits of PRF (z, “Password − derived key”, w). keylength
equals 8 for DES, 16 for 3DES, IDEA and RC4-128, and 5 for RC2. For DES
(3DES) the key should be considered as a 64-bit (192-bit) encoding of a 56-bit
(168-bit) DES key, with parity bits ignored.

Expansion To prevent dictionary attacks on the encrypted elements (see Sec-
tion 2.4 for more details) we uniformly expand the element z from an n-bit
number to a (n + α)-bit number. We form a block b of (n + α) bits as fol-
lows:

α = 50;
n = dlog2 pe;
α′ := b(2α+n)/pc;
c ∈R {0, . . . , α′ − 1};
b := z+cp; {Note that this calculation is in  and not in  ∗

p, i.e., no reduction
modulo p.}

Padding If the block length len of the encryption scheme does not divide (n + α)
then b is padded with (len − (n + α (mod len))) random bits to form b′.

Encryption The b′ is encrypted using the derived key k. The used shared-key
cipher is defined by the agreed cipher suite. It is encoded in the cipher suite
name after TLS DH EKE and is basically the agreed session encryption cipher if
existing (e.g., we would encrypt with RC4/128 if the cipher suite agreed upon is
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TLS DH EKE RC4 128 WITH RC4 128 SHA). The list of proposed additional cipher
suites is given in Figure 8 in the Appendix. For block ciphers in chaining mode,
the Initialization Vector (IV) will be set to all 0.

Decryption An encrypted value is decrypted using the key k derived as de-
fined above in the “Key derivation” step. From the decrypted text, the ran-
dom padding (if existing) is removed and the resulting value is then reduced
(mod p) to undo the expansion.

5. RATIONALES AND EXPLANATIONS

The protocol proposed above takes into account all known attacks [Bellovin and Merrit 1992;
Steiner et al. 1995; Jablon 1996; Patel 1997]. In addition, it provides semantic se-
curity and at the same time improves the performance. Let us now give more
detailed rationales and explanations of certain choices taken during the protocol
design.

5.1 Flows

The ClientHello message cannot carry the client’s identity information.9 There-
fore, the server cannot initiate the key exchange protocol by encrypting its DH
half-key as described (with inverted roles) in the protocol in Section 2 and the best
possible alternative is to send the half-keys unencrypted.

To prevent dictionary attacks, the party that encrypts with the password should
be very careful. That party must never use keys derived from the DH key before
it knows that the other party explicitly confirmed knowledge of the password by
proving knowledge of the DH key or implicitly by encrypting its own half-key with
the password. This rules out using the standard TLS flows. The client, which is the
first party to be able to encrypt with the password, cannot send Finished before
getting a “proof of knowledge of password” from the server, i.e., it is of paramount
importance that the client does not use any key derived from the premaster secret
pms in the Record or Handshake Protocol before the client has successfully received
and verified the server’s Finished message.

Any other approach of not swapping the Finished messages would increase the
number of flows and deviate even further from the standard TLS messages. The
changes in the overall protocol state-machine can nevertheless be kept to a mini-
mum. Note also that there is no penalty in communication delay due to the addi-
tional fifth flow in the Handshake Protocol: The client can start to send application
data immediately after sending the Finished message.

If we exclude altering or misusing ClientHello we can actually extend this
reasoning and show that it is impossible to build a secure mutually-authenticated
key exchange in four flows that relies only on weak secrets. The server, not knowing
the client’s identity after the first flow, cannot produce any implicit or explicit
demonstration of knowledge of the password in the second flow. Consequently the
client cannot send any key confirmation in the third flow, and the only way to

9At least if we want to retain compatibility with standard TLS and do not resort to changes of
ClientHello or unacceptable ad-hoc measures such as encoding the identity in the nonce field of
the ClientHello.
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complete client authentication is to send such a message in an additional fifth flow.
Thus our protocol is optimal in terms of the number of flows.

5.2 Algebraic Structure

The algebraic group of choice of TLS and also the original basis for DH-EKE is  ∗
p.

However, instead of  ∗
p alternative cyclic groups might be worth considering in the

future.
One interesting alternative are the multiplicative groups GF (2m)∗. Computation

is quite efficient. Additionally, the problem discussed in Section 2.4.1 disappears:
The cardinality of GF (2m)∗ is 2m − 1 and a straightforward mapping to m bits
would leave only negligible probability of decrypting the only illegal value, i.e.,
0, with a wrong password during a dictionary attack. However, further study is
necessary to find specific parameters and compare the security and performance
with the solution for  ∗

p.
Elliptic curves are another promising alternative. Their advantage is that, for

comparable security, the group operations are more efficiently computable and the
group elements are smaller, hence bandwidth can be saved. Elliptic curves are
also discussed in the context of the IETF TLS working group, but so far no corre-
sponding cipher suites have been adopted. Additionally, the parameter choice and
verification are more difficult, and the password encryption function Ê(·) would
have to be redesigned. The points on an elliptic curve cannot be mapped bijec-
tively onto a continuous range of integers and therefore expansion cannot be used to
circumvent the problem related to the domain size of ordinary cipher discussed in
Section 2.4.1. However, a recent proposal by Black and Rogaway [2000] on encrypt-
ing finite subsets of arbitrary size together with a dense representation of points
such as the one described by Seroussi [1998] might open the door to a more efficient
protocol based on elliptic curves.

5.3 Verifiable Parameter Generation

The verification of ephemeral group parameter is based on heuristics. There still
remains some degree of freedom for an opponent to find pseudo-primes through
pre-computational search. A safer alternative might be to use provable primes gen-
erated using the prime-number generation algorithm of Maurer [1995]. The server
generates p based on Maurer’s algorithm. The primality of q can then be shown as
part of the primality proof for p. One drawback of this approach is that messages
increase in size and the code becomes more complicated (the current approach can
be built on components already existing in most TLS toolkits). Additionally, we
can expect a considerable performance impact for this approach.

5.4 Password Encryption

The following design decisions are worth commenting on the choice of the key
derivation algorithm and the number of expansion bits.

The key derivation mechanism approximates the recent Version 2.0 of PKCS
#5 [RSA 1999] reusing basic TLS building blocks. The salt guarantees that for each
protocol run we get independent keys and addresses concerns about interactions
between multiple usage of the same key.

Based on the formula α ≈ k + log2(tmax) given in Section 2.4.1, we choose 230
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for 2k, the maximally tolerable success probability of a guessing attack, and 220

for tmax, the upper bound for the number of protocol runs. This gives us α = 50
required expansion bits. With these values we have a wide safety margin in all
practical applications: On the one hand, no user will enter his or her password
and connect to the server more than 220 times, and the server that tracks failed
connection request in its ‘potential online attack’ counter will foil all attempts to
get more samples with active attacks. On the other hand, already k = 1 means
that an attacker reduces the number of possible passwords at most by half, which
in many cases could already be acceptable.

5.5 Why EKE?

We also investigated alternatives to EKE. Whereas many of them have various
advantages over DH-EKE, none could match DH-EKE with its minimal impact
on TLS: Two additions in ClientKeyExchange and ServerKeyExchange and a
minimal and unavoidable change in the protocol state machine (reversion of the
two finished flows) seems to be the smallest change possible to integrate secure
password-based protocols into TLS. Below are some more detailed explanations
why we rejected other protocols.

5.5.1 SPEKE. An alternative protocol is the Simple Password Encrypted Key
Exchange (SPEKE) [Jablon 1996]. The protocol is also based on a DH key exchange
but instead of encrypting the half-keys with the password it uses the password to
derive a generator for a large prime-order subgroup.

It has two main advantages over DH-EKE. On the one hand, the problem due to
non-uniform distribution of encrypted elements does not occur and, on the other
hand, the adoption of elliptic curves to improve performance is more straightfor-
ward.

Unfortunately, integrating SPEKE into TLS cannot be done as easily: As already
explained, the ClientHello message cannot carry identity information. As the
identity of the peer has to be known before anybody can start the protocol, we
require more radical changes in the flows, in particular it would require two more
messages or changes in the Finished messages.

5.5.2 SRP. Another prominent proposal is the Secure Remote Password proto-
col (SRP) [Wu 1998]. While it seems the most efficient system that reduces also
the risk when the server database is stolen, it has similar problems with integration
as SPEKE does. The protocol cannot be started in flow 2, which means that the
handshake would require an additional request-response pair. Taking into account
current network delays and the performance of computers today as well as pro-
jections on how they will change in the future10 led us to trade performance for
reduced flows.

5.5.3 What about Protocols relying on Server Public Keys?. The responder side
in TLS is quite often a stand-alone server capable of keeping strong public key pairs.
You might wonder if this cannot be exploited to achieve easier and more efficient
protocols? Indeed, various protocols [Halevi and Krawczyk 1999; Gong et al. 1993]

10Moore’s Law still seems valid for the foreseeable future yet latency is already closely bounded
by the speed of light.
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show how to do this in a provably secure and simple manner. While these protocols
are definitely suitable in many applications, there is one major drawback: The
client has to obtain the proper public key of the server. One solution is to ask the
user for confirmation of a fingerprint as suggested by Halevi and Krawczyk [1999].
This is definitely preferable over fixing the public key in the software, but is quite
cumbersome for the user. You might argue that current web browsers already
manage root certificates and adding one more is not such a big deal. This is true,
but there is the problem of key revocation. Additionally, one should not ignore
the fact that it is not very difficult to trick ignorant users into installing bogus
root keys to their key ring: Generate your own root CA, build a fancy web site
and require https using certificates relying on your own root CA to access it. The
likelihood that some user will install this key is rather large. Even worse, you can
tell who has installed your root CA certificate if you track user access to the site
and the certificate. This allows you to target that user for a man-in-the-middle
attack. In fact, an anecdotal incident with a similar man-in-the-middle attack has
happened in mid-1998 to a Dutch web banking site. As EKE-like protocols rely less
on the user’s awareness of the such involved risks, they clearly are a more robust
and secure approach.

5.5.4 Others. We also considered the protocol proposed by Lucks [1997] and pro-
tocols based on collisionful hash [Anderson and Lomas 1994; Bakhtiari et al. 1996].
However, none of their feature was able to outweigh the simplicity of the integration
of DH-EKE in TLS.11

6. CONCLUSION

We outlined a number of situations in which the current cipher suites of TLS are
not completely satisfactory, such as home banking over the web. Secure password-
based authenticated key-exchange protocols can improve the situation and can
be integrated into TLS in an efficient and non-intrusive manner. We validated
our approach by integrating the cipher suite into a in-house toolkit providing
the complete SSL3.0 protocol suite. Because of our careful protocol design re-
lying on existing building blocks and the non-intrusive integration of the protocol
flows, the adaption of the protocol engine required only few and small changes.
Measurements of the performance showed that our cipher suite compares well
with other cipher suites. DH-EKE outperformed comparable cipher suites pro-
viding mutual authentication and perfect forward secrecy by a factor of up to two
(SSL DHE DSS WITH DES CBC SHA) and was only slightly slower than the commonly
used cipher suite SSL RSA WITH RC4 128 SHA.

Moreover, in a modification to the original DH-EKE protocol we showed that
the session keys not only can but also should be computed in subgroups of prime
order: We achieve better security and as a side effect also improve the perfor-
mance of DH-EKE. In compliance with the security analysis given in the Appendix
of Steiner et al. [1995], we obtain reasonable assurance that the security of our pro-
tocols can be founded on the hardness of the Decisional Diffie-Hellman problem.

11Since the time of our first publication, MacKenzie, Patel, and Swaminathan [2000] also have
found a serious attack on Lucks [1997].
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Since the time of building our prototype and our first publication [Buhler et al. 2000],
considerable progress has been made regarding the security of password-based key-
agreement protocols: Bellare, Pointcheval, and Rogaway [2000] and Boyko, MacKenzie, and Patel [2000]
proposed protocols that can be formally proven secure in stronger and more rigid
models adapted from Bellare and Rogaway [1995b], Bellare et al. [1998] and Shoup [1999].
As it turns out AuthA [Bellare et al. 2000; Bellare and Rogaway 2000] corresponds
to a large extent to our adoption of DH-EKE for TLS, which further validates our
approach.

It remains to be seen whether password-based protocols will find a wider adoption
in the context of TLS. However, given the problems identified in the introduction
and how they can be alleviated using password-based protocols, one can only hope
so.
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André Adelsbach, N. Asokan and Ahmad-Reza Sadeghi for their detailed comments.

REFERENCES

Anderson, R. J. and Lomas, T. M. A. 1994. Fortifying key negotiation schemes with
poorly chosen passwords. Electronics Letters 30, 13 (June), 1040–1041.

Bakhtiari, S., Safavi-Naini, R., and Pieprzyk, J. 1996. On password-based authenti-
cated key exchange using collisionful hash functions. In 1st Australasian Conference on
Information Security and Privacy (ACISP ’96), Number 1172 in Lecture Notes in Com-
puter Science (1996), pp. 299–310. Springer-Verlag, Berlin Germany.

Bellare, M., Canetti, R., and Krawczyk, H. 1998. A modular approach to the design
and analysis of authentication and key exchange protocols. In 30th Annual Symposium on
Theory Of Computing (STOC) (Dallas, TX, USA, May 1998), pp. 419–428. ACM Press.

Bellare, M., Pointcheval, D., and Rogaway, P. 2000. Authenticated key exchange
secure against dictionary attacks. In B. Preneel Ed., Advances in Cryptology – EURO-
CRYPT ’2000 , Number 1807 in Lecture Notes in Computer Science (Brugge, Belgium,
2000), pp. 139–155. Springer-Verlag, Berlin Germany. Appeared also as Cryptology ePrint
Archive Report 2000/014, 28 April, 2000.

Bellare, M. and Rogaway, P. 1993. Random oracles are practical: A paradigm for de-
signing efficient protocols. In V. Ashby Ed., 1st ACM Conference on Computer and Com-
munications Security (Fairfax, Virginia, Nov. 1993), pp. 62–73. ACM Press. Appeared also
(in identical form) as IBM RC 19619 (87000) 6/22/94.

Bellare, M. and Rogaway, P. 1995a. Optimal asymmetric encryption — how
to encrypt with RSA. In A. D. Santis Ed., Advances in Cryptology – EURO-
CRYPT ’94 , Number 950 in Lecture Notes in Computer Science (1995), pp.
92–111. International Association for Cryptologic Research: Springer-Verlag, Berlin
Germany. Final (revised) version appeared November 19, 1995. Available from
http://www-cse.ucsd.edu/users/mihir/papers/oaep.html .

Bellare, M. and Rogaway, P. 1995b. Provably secure session key distribution — the three
party case. In 27th Annual Symposium on Theory of Computing (STOC) (May 1995), pp.
57–66. ACM Press.

Bellare, M. and Rogaway, P. 2000. The AuthA protocol for password-based authen-
ticated key exchange. Technical report (March), Contribution to the IEEE P1363 Study
Group for Future Public-Key Cryptography Standards.

Bellovin, S. and Merrit, M. 1993. Augmented encrypted key exchange: a password-based
protocol secure against dictionary atttacks and password file compromise. In V. Ashby Ed.,

http://www-cse.ucsd.edu/users/mihir/papers/oaep.html


22 · Steiner et al.

1st ACM Conference on Computer and Communications Security (Fairfax, Virginia, Nov.

1993), pp. 244–250. ACM Press.

Bellovin, S. M. and Merrit, M. 1992. Encrypted key exchange: Password-based proto-
cols secure against dictionary attacks. In Proceedings of the IEEE Symposium on Research
in Security and Privacy (Oakland, CA, May 1992), pp. 72–84. IEEE Computer Society,
Technical Committee on Security and Privacy: IEEE Computer Society Press.

Bellovin, S. M. and Merritt, M. 1991. Limitations of the Kerberos authentication sys-
tem. In USENIX Conference Proceedings (Dallas, TX, Winter 1991), pp. 253–267. USENIX.
An earlier version of this paper was published in the October, 1990 issue of Computer Com-
munications Review.

Berners-Lee, T., Fielding, R. T., Nielsen, H. F., Gettys, J., and Mogul, J. 1997. Hy-
pertext Transfer Protocol — HTTP/1.1. Internet Request for Comment RFC 2068 (Jan.),
Internet Engineering Task Force.

Bishop, M. and Klein, D. V. 1995. Improving system security via proactive password
checking. Computers & Security 14, 3, 233–249.

Black, J. and Rogaway, P. 2000. Ciphers with arbitrary finite domains. Manuscript.
Available from http://www.cs.unr.edu/~jrb/papers.html .

Bleichenbacher, D. 1998. Chosen ciphertext attacks against protocols based on the RSA
encryption standard PKCS. In H. Krawczyk Ed., Advances in Cryptology – CRYPTO
’98 , Number 1462 in Lecture Notes in Computer Science (1998), pp. 1–12. International
Association for Cryptologic Research: Springer-Verlag, Berlin Germany.

Boyko, V., MacKenzie, P., and Patel, S. 2000. Provably secure password-authenticated
key exchange using Diffie-Hellman. In B. Preneel Ed., Advances in Cryptology – EURO-
CRYPT ’2000 , Number 1807 in Lecture Notes in Computer Science (Brugge, Belgium,
2000), pp. 156–171. Springer-Verlag, Berlin Germany.

Buhler, P., Eirich, T., Steiner, M., and Waidner, M. 2000. Secure password-based
cipher suite for TLS. In Symposium on Network and Distributed Systems Security (NDSS
’00) (San Diego, CA, Feb. 2000), pp. 129–142. Internet Society.

Chappell, D. 1999. Exploring Kerberos, the protocol for distributed security in Windows
2000. Microsoft Systems Journal 14, 8 (Aug.).

Dierks, T. and Allen, C. 1999. The TLS protocol version 1.0. Internet Request for Com-
ment RFC 2246 (Jan.), Internet Engineering Task Force. Proposed Standard.

Diffie, W. and Hellman, M. 1976. New directions in cryptography. IEEE Transactions
on Information Theory IT-22, 6 (Nov.), 644–654.

Freier, A. O., Kariton, P., and Kocher, P. C. 1996. The SSL protocol: Version 3.0.
Internet draft, Netscape Communications.

Gong, L., Lomas, M., Needham, R., and Saltzer, J. 1989. Protecting poorly chosen
secrets from guessing attacks. In Proceedings of the Twelth ACM Symposium on Operating
Systems Principles (Dec. 1989). The Wigwam, Litchfield Park, Arizona. A revised journal
version appeared as [Gong et al. 1993].

Gong, L., Lomas, M., Needham, R., and Saltzer, J. 1993. Protecting poorly chosen
secrets from guessing attacks. IEEE Journal on Selected Areas in Communications 11, 5
(June), 648–656.

Halevi, S. and Krawczyk, H. 1999. Public-key cryptography and password protocols.
ACM Transactions on Information and System Security 2, 3, 25–60. Preliminary version

in Proc. of the 5th ACM Conference on Computer and Communications Security, 1998, pp.
122-131.

Jablon, D. P. 1996. Strong password-only authenticated key exchange. Computer Com-
munication Review 26, 5 (Sept.), 5–26.

Jablon, D. P. 1997. Extended password key exchange protocols immune to dictionary
attack. In Proceedings of the WETICE’97 Workshop on Enterprise Security (Cambridge,
MA, USA, June 1997).

Kaliski, B. and Staddon, J. 1998. PKCS #1: RSA cryptography specifications. Technical
note (Sept.), RSA Laboratories. Version 2.0. Published in October 1998 as Internet RFC

http://www.cs.unr.edu/~jrb/papers.html


Secure Password-Based Cipher Suite for TLS · 23

2437.

Kohl, J. T. and Neuman, B. C. 1993. The Kerberos network authentication service (V5).
Internet Request for Comment RFC 1510, Internet Engineering Task Force.

Lim, C. H. and Lee, P. J. 1997. A key recovery attack on discrete log-based schemes using
a prime order subgroup. In B. S. Kaliski, Jr. Ed., Advances in Cryptology – CRYPTO
’97 , Number 1294 in Lecture Notes in Computer Science (1997), pp. 249–263. International
Association for Cryptologic Research: Springer-Verlag, Berlin Germany.

Lucks, S. 1997. Open key exchange: How to defeat dictionary attacks without encrypt-
ing public keys. In Security Protocol Workshop’97 (Ecole Normale Suprieure, Paris, April
1997).

MacKenzie, P., Patel, S., and Swaminathan, R. 2000. Password-authenticated key ex-
change based on RSA. In T. Okamoto Ed., Advances in Cryptology – ASIACRYPT ’2000 ,
Number 1976 in Lecture Notes in Computer Science (Kyoto, Japan, 2000), pp. 599–613.
International Association for Cryptologic Research: Springer-Verlag, Berlin Germany.

Maurer, U. M. 1995. Fast generation of prime numbers and secure public-key crypto-
graphic parameters. Journal of Cryptology 8, 3, 123–155.

Medvinsky, A. and Hur, M. 1999. Addition of Kerberos cipher suites to Transport Layer
Security (TLS). Internet Request for Comment RFC 2712 (Oct.), Internet Engineering Task
Force.

Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. 1997. Handbook of applied
cryptography. CRC Press series on discrete mathematics and its applications. CRC Press.
ISBN 0-8493-8523-7.

Mitchell, J., Shmatikov, V., and Stern, U. 1998. Finite-state analysis of SSL 3.0. In
7th USENIX Security Symposium (San Antonio, Texas, USA, Jan. 1998). USENIX.

Morris, R. and Thompson, K. 1979. Password security: A case history. Communications
of the ACM 22, 11 (Nov.), 594–597.

Patel, S. 1997. Number theoretic attacks on secure password schemes. In Proceedings of
the IEEE Symposium on Research in Security and Privacy (Oakland, CA, May 1997), pp.
236–247. IEEE Computer Society, Technical Committee on Security and Privacy: IEEE
Computer Society Press.

RSA. 1999. PKCS #5: Password-based cryptography standard. Version 2.0 (March), RSA
Laboratories.

Seroussi, G. 1998. Compact representations of elliptic curve points over GF(2n). Research
Contribution to IEEE P1363.

Shoup, V. 1999. On formal models for secure key exchange. Research Report RZ 3120
(#93166) (April), IBM Research. A revised version 4, dated November 15, 1999, is available
from http://www.shoup.net/papers/ .

Steiner, M., Tsudik, G., and Waidner, M. 1995. Refinement and extension of Encrypted
Key Exchange. ACM Operating Systems Review 29, 3 (July), 22–30.

Tygar, J. and Whitten, A. 1996. WWW electronic commerce and Java Trojan horses.
In Second USENIX Workshop on Electronic Commerce (Oakland, California, Nov. 1996),
pp. 243–250. USENIX.

Wagner, D. and Schneier, B. 1996. Analysis of the SSL 3.0 protocol. In Second USENIX
Workshop on Electronic Commerce (Oakland, California, Nov. 1996), pp. 29–40. USENIX.

Wu, T. 1998. The secure remote password protocol. In Symposium on Network and Dis-
tributed Systems Security (NDSS ’98) (San Diego, California, March 1998), pp. 97–111.
Internet Society.

Wu, T. 1999. A real-world analysis of Kerberos password security. In Symposium on Net-
work and Distributed Systems Security (NDSS ’99) (San Diego, CA, Feb. 1999). Internet
Society.

Zimmermann, P. R. 1995. The Official PGP User’s Guide. MIT Press, Cambridge, MA,
USA. ISBN 0-262-74017-6.

http://www.shoup.net/papers/


24 · Steiner et al.

APPENDIX

A. DATA STRUCTURES AND DEFINITIONS

In addition to the logical flows and their processing, a standardization of TLS
extension also requires the definition of the identifiers of the cipher suites and the
necessary additional data structures.

Possible cipher suites for the DH-EKE protocol are proposed in Figure 8, but for
obvious reasons no codes have been assigned yet. The nomenclature follows TLS
tradition and encodes the involved algorithm in the name: A cipher suite of the form
TLS DH EKE pwdencrypt WITH cipher hash means that that cipher pwdencrypt is
used to encrypt the password in the handshake protocol (see Section 4.4) whereas
cipher and hash are used in the record layer as cipher and hash, respectively. Given
that the effective entropy of a password is not very high, the use of 3DES for the
password-based encryption may seem an overkill. However, keeping pwdencrypt

equal to cipher (in the case it is not NULL) is the simpler and more consistent
approach than fixing a single cipher or defining all possible permutations.

Figure 9 defines the necessary additional data structures for the ClientKeyExchange
and ServerKeyExchange messages.

CipherSuite TLS DH EKE DES CBC WITH NULL SHA
CipherSuite TLS DH EKE RC4 128 WITH NULL MD5
CipherSuite TLS DH EKE DES CBC WITH DES CBC SHA
CipherSuite TLS DH EKE 3DES EDE CBC WITH 3DES EDE CBC SHA
CipherSuite TLS DH EKE RC4 128 WITH RC4 128 MD5
CipherSuite TLS DH EKE IDEA CBC WITH IDEA CBC SHA
CipherSuite TLS DH EKE RC4 128 WITH NULL SHA
CipherSuite TLS DH EKE DES CBC WITH NULL MD5
CipherSuite TLS DH EKE DES CBC WITH DES CBC MD5
CipherSuite TLS DH EKE 3DES EDE CBC WITH 3DES EDE CBC MD5
CipherSuite TLS DH EKE RC4 128 WITH RC4 128 SHA
CipherSuite TLS DH EKE IDEA CBC WITH IDEA CBC MD5

Fig. 8. Proposed Cipher Suites for DH-EKE/TLS.
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struct {
select (KeyExchangeAlgorithm) {

case dh eke: /* new option */
ServerDHEKEParams params;

case diffie hellman:
ServerDHParams params;
Signature signed params;

case rsa:
ServerRSAParams params;
Signature signed params;

} ;
} ServerKeyExchange;

struct {
ServerDHParams key params;
ServerDHParams verifier params;
ServerDHParamsProof proof; /* optional */

} ServerDHEKEParams; /* new type */

struct {
seed <0 .. 216−1>;

} ServerDHParamsProof; /* new type */

struct {
select (KeyExchangeAlgorithm) {

case dh eke: /* new option */
ClientDHEKEParams params;

case rsa:
EncryptedPreMasterSecret;

case diffie hellman:
ClientDiffieHellmanPublic;

} exchange keys;
} ClientKeyExchange;

struct {
String clientIdentity;
EncryptedDHParams params;

} ClientDHEKEParams; /* new type */

struct {
password-encrypted dh Xs<1 .. 216−1>;

} EncryptedDHParams; /* new addition */

Fig. 9. Adding DH-EKE/TLS to data structures of TLS.
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