
Extensions to
Multi-Party Computations

Birgit Pfitzmann
Universität des Saarlandes

<pfitzmann@cs.uni-sb.de>

Michael Waidner
IBM Research Division, Zurich Research Lab

<wmi@zurich.ibm.com>

Table of Contents

1 Use of Unfair Stopping

2 Optimism

3 Reactivity

4 Individual Requirements

5 Summary

 2

1 Use of Unfair Stopping

Motivation: Collective n-party key generation
without honest majority (any t < n) [PW90, P96]

(y1, ..., yn) := f(x1, ..., xn)

P1 Pn

x1 xn

to P1,..., Pn (in some order)

yi

n times “ok” “stop”, i

yi “stop”, i

i ∈ Adv

• Not fair: adversary learns output in any case

• Not in “standard” trusted host definitions

• Real protocol: [CDG88]

• computational setting, any t < n
• secrecy of inputs, even uncondional for P1

• either result correct or disrupter is identified

 3

1.1 Repetition of MPCs with unfair stopping

P1 Pn

(y1,..., yn) := f() repeat
without Pi

P1 PnPi

y1 “stop”, iyn

• Fail-stop signatures [PW90, P96]

• No private inputs (only random values)

• y1 = (sk, pk), yi = pk (i = 2, ..., n)

• ≈ “adversary can select at most one out of
n correct random keys” [sketch in PW90]

• In case of private inputs:

• specific f() only: don’t need dishonest input

• if “input commit” successful then repeat
“compute f()” until it succeeds

 4

2 Optimism

Motivation: Fair n-party contract signing with third
party for exception handling [DLM82 → ASW96]

• Fair protocols using a trusted third party T

• usually simple protocols (~ trusted host ...)

• T might become a bottleneck if involved in
all protocol runs

• thus, be optimistic:

• use T for exception handling only

• less simple protocols

• Old concept
• General approach [DLM82]

• Fair exchange of “values” [BP90]

• Contract signing [BGMR88]

• Certified mail, contract signing [M97]

• Generic fair exchanges [ASW96, ASW97, ...]

• Multi-party protocols [ASW96, BW98]

• Can be applied to any MPC problem ...

 5

Construction [BW98]

P1 Pn

[CDG88] for y := f(x1, ..., xn)

P1 Pn

y

to all Pi

+ ZKP for
com(x1) ~ ET(x1)

ET(x1) ET(x1)

“Trusted host “
T for f(...)

“stop”, i

ET(x1), ..., ET(xn)
+ signed contract

y

[BW98] Optimistic contract
signing of <“this” MPC>

com(x1) com(xn)

auxAdv

(= y)

com(x1) com(xn)

...

• Usual definition of MPC, but t = n-1

• Deterministically fair

• needs third party [C86]

• w/o third party: polynomially small
advantage [GHY88, BG89, GL90]

 6

3 Reactivity

Motivation: Games [GMW87], payment schemes,
signature schemes, etc., are all reactive systems

• Main additions to the non-reactive setting

• System has to keep state

⇒ Internal variables: state

⇒ External variables: user input / output

• Behaviour of users must be considered

⇒ Explicit “user machine,”
interacting with adversary

• “Old” concept

• “Message finder” [GM84]

• Signature schemes secure against
active attacks [GMR88]

• General reactive systems
[P93, PW94]

• General MPC [G98, C98]

 7

• User machine

• Computationally as unrestricted
as the adversary (necessarily not less ...)

• Might interact outside the system

• Might create most fortunate situation for
the adversary

• Thus: for all users ...

Trusted Host

Adversary

P1 PnPiusers

secure fully
connected

network

Adv

• Sometimes minimally benign user
behaviour is mandated

 8

4 Individual Requirements

Motivation: Unify definitions for different kinds of
services [P93, PW94, P96]

General topic

• Any MPC can be computed securely

Another way to look at the definitional problem

• Typical MPC problems
• Signatures, payment, contract signing, ...

• Usually not completely specified
• “Signatures” w/ or w/o “fail-stop property”

• “Cash” w/ or w/o “offline transferability”

• Trusted host always complete!

• Specific definitions for individual problems
• [GM84, GMR88, N98, ...]; no trusted host models

• Our goal
• Specify (minimal and optional) individual

requirements on service only

• Define the “ideal” service

• Give a general cryptographic semantics to any
such service

 9

4.1 Security Requirements

What is a service?

...

Interface
Access
points

Interface events

• Interleaved sequences of interface events
• payer in: (“pay”, tid, 100$, to Birgit)
• payee in: (“receive”, tid, 100$, from Michael)
• bank_1 in: (“allow”, tid, 100$, from Michael, to Birgit)
• bank_1 out: (“deduct”, tid, 100$, from Michael)
• bank_2 out: (“add”, tid, 100$, to Birgit)
• payer out: (“paid”, tid, 100$, to Birgit)
• payee out: (“received”, tid, 100$, from Michael)

• Characterize set of allowed sequences, e.g.,
using some temporal logic (e.g., [PW96])

• {payer}: “paid” not without “pay”
• {payer, payee}: “pay” followed by “received”
• {payer, bank_1}: “deduct” not without “pay”

 10

4.2 Structure

• Req’s independent of “implementation”!

• Structure of system providing service
• Some model for interacting (poly) algs

• ∀ users ...

• Adversary A

• Can interact with users U outside system

• Altered system interface for A

Users U

Adversary
A

how
gullible?

• In principle same problems & approach
as for trusted host model for reactive systems

• For integrity requirements: U can be part of A

 11

• Problems if one really tries it, e.g.,
• structure might depend on sub-protocol, also in

interface

• identities and “tid” in interfaces

• there is no complete, exact model of interacting
machines usable for “trusted host” or our “structures”

4.3 Cryptographic semantics

• Principle

∀ (poly) adversaries A (prob. interactive algo.)

∀ (poly) users U "

Probwrong(k) is “small”:

• = 0
• < poly(sys_pars) • 2–k

• < 1/poly(k)
with

Probwrong(k) :=

Prob[Run(SysRest(k) × A(k) × U(k))|Interface

∉ Semstandard(req)]

 12

4.5 Privacy

• Adversary does not get a specific information

• Difficult to catch all hidden channels
between users and adversary on the
service level [S94]

• General problem with all digital models ...

• System fulfills req’s, and does nothing else

• No additional interface events:
complete specification

• Specifies adversary’s interface completely:
leads naturally to trusted host model

⇒ Specification of secure systems in two steps:

• Minimal service for integrity

• Simple and intuitive approach

• Definitions valid for larger classes,
not for single services or systems only

• Complete system for privacy

 13

5 Summary

Somewhat driven by the need to prove systems
that use general MPCs as subprotocols ...

• We needed “non-standard” models of MPC
• Unfair stopping

→ repetition for key generation

• Optimistic computations

• Real-world systems are naturally reactive
• Quantification over all users

• Composition of reactive systems [PW92, PS96]

Service w/o privacy can be specified as “usual”

• Use some temporal logic

• Attach cryptographic semantics to
requirements

Work in progress

• Proofs for the non-standard models

• Composability of reactive systems?

• How to deal with privacy requirements in
service specifications

 14

References
ASW96 N. Asokan, M. Schunter, M. Waidner: Optimistic Protocols for Multi-

Party Fair Exchange; IBM Research Report RZ 2892, IBM Zurich
Research Laboratory, Nov 1996

BG89 D. Beaver, S. Goldwasser: Multiparty Computation with Faulty
Majority; 30th Symposium on Foundation of Computer Science
(FOCS) 1989, IEEE Computer Society, 1989, 468-473

BGMR90 M. Ben-Or, O. Goldreich, S. Micali, R. L. Rivest: A Fair Protocol for
Signing Contracts; IEEE Transactions on Information Theory 36/1
(1990) 40-46

BP90 H. Bürk, A. Pfitzmann: Value Exchange Systems Enabling Security
and Unobservability; Computers & Security 9/8 (1990) 715-721

BW98 B. Baum, M. Waidner: Multi-Party Contract Signing and Certified
Consensus; IBM Research Report RZ xxxx, IBM Zurich Research
Laboratory, June 1998

C86 R. Cleve: Limits on the Security of Coin Flips When Half the
Processors are Faulty; 18th Symposium on Theory of Computing
(STOC) 1986, ACM, New York 1986, 364-369

C98 R. Canetti: Security and Composition of Multi-Party Cryptographic
Protocols; June 5, 1998

CDG88 D. Chaum, I. B. Damgård, J. van de Graaf: Multiparty Computations
ensuring privacy of each party's input and correctness of the result;
Crypto '87, LNCS 293, Springer-Verlag, Berlin 1988, 87-119

DLM82 R. A. DeMillo, N. A. Lynch, M. J. Merritt: Cryptographic Protocols;
14th Symposium on Theory of Computing (STOC) 1982, ACM, New
York 1982, 383-400

G98 O. Goldreich: Secure Multi-Party Computation; June 6, 1998
GHY88 Z. Galil, S. Haber, M. Yung: Cryptographic computation: secure

fault-tolerant protocols and the public-key model; Crypto '87, LNCS
293, Springer-Verlag, Berlin 1988, 135-155

GL91 S. Goldwasser, L. Levin: Fair Computation of General Functions in
Presence of Immoral Majority; Crypto '90, LNCS 537, Springer-
Verlag, Berlin 1991, 77-93

GM84 S. Goldwasser, S. Micali: Probabilistic Encryption; Journal of
Computer and System Sciences 28 (1984) 270-299

 15

GMR88 S. Goldwasser, S. Micali, R. L. Rivest: A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks; SIAM Journal
on Computing 17/2 (1988) 281-308

GMW87 O. Goldreich, S. Micali, A. Wigderson: How to play any mental
game - or - a completeness theorem for protocols with honest
majority; 19th Symposium on Theory of Computing (STOC) 1987,
ACM, New York 1987, 218-229

M96 S. Micali: Certified E-Mail with Invisible Post Offices; presented at
RSA 97

N98 M. Naor: Talk on the different notions of secure encryption
schemes; given at Monte Vertia Workshop on Cryptographic
Protocols, March 1998.

P93 B. Pfitzmann: Sorting Out Signature Schemes; 1st ACM Conference
on Computer and Communications Security, acm press 1993, 74-85

P96 B. Pfitzmann: Digital Signature Schemes — General Framework
and Fail-Stop Signatures; LNCS 1100, Springer-Verlag, Berlin 1996

PS96 B. Pfitzmann, M. Schunter: Asymmetric Fingerprinting; Eurocrypt
‘96, LNCS 1070, Springer-Verlag, Berlin 1996, 84-95

PW90 B. Pfitzmann, M. Waidner: Formal Aspects of Fail-stop Signatures;
Interner Bericht 22/90 der Fakultät für Informatik, Universität
Karlsruhe, Dec. 1990

PW92 B. Pfitzmann, M. Waidner: How to Break and Repair a "Provably
Secure" Untraceable Payment System; Crypto '91, LNCS 576,
Springer-Verlag, Berlin 1992, 338-350

PW94 B. Pfitzmann, M. Waidner: A General Framework for Formal
Notions of "Secure" Systems; Hildesheimer Informatik-Berichte
11/94, April 1994

PW96 B. Pfitzmann, M. Waidner: Properties of Payment Systems: General
Definition Sketch and Classification; IBM Research Report RZ 2823,
IBM Zurich Research Laboratory, May 1996

S94 M. Schunter: Spezifikation von Geheimhaltungseigenschaften für
reaktive kryptologische Systeme; Diplomarbeit am Institut für
Informatik, Universität Hildesheim, Januar 1994

Our reports: <http://www.semper.org/sirene>

