
Electronic Notes in Theoretical Computer Science 32 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume32.html 19 pages

Cryptographic Security of Reactive Systems
(Extended Abstract)

Birgit P�tzmann, Matthias Schunter 1

Fachrichtung Informatik

Saarland University

Saarbr�ucken, Germany

Michael Waidner

IBM Zurich Research Laboratory

Rueschlikon, Switzerland

Abstract

We describe some general relations between cryptographic and abstracted security

de�nitions, and we present a novel model of security for reactive systems, general-

izing previous de�nitions relying on the simulatability paradigm.

The larger context is the goal to provide cryptographic semantics for \abstract"

speci�cations, so that the \reality" of the former can be combined with the brevity

or, if a formal language is used, the precision and tool-support, of the latter.

The novel aspects of our speci�c de�nition are a separate treatment of honest

users, a precise synchronous switching model, and easy inclusion of various trust

models. We also believe to have the �rst general strategy to deal abstractly with

accepted vulnerabilities (such as leakage of tra�c patterns), and the �rst worked-

out serious-size examples within a general model. Most importantly, our model

has the �rst general composition theorem, and a link to requirements formulated in

logics.

1 Introduction

Security proofs for systems involving cryptography are getting increasing at-

tention in theory and practice, and they are used for increasingly large systems.

While for some time most of the e�ort concentrated on primitives like encryp-

tion and signature schemes themselves, or authentication and key exchange,

1 This work was partially supported by the MAFTIA project.

c
2000 Published by Elsevier Science B. V.

Pfitzmann, Schunter and Waidner

currently work is under way on entire secure channels, fair exchange proto-

cols, payment systems, and anonymity systems. In the future, one might want

to prove even larger systems like entire electronic-commerce architectures, or

distributed operating systems using cryptography.

Two communities are working on such proofs, and the techniques are al-

most completely disjoint. One of our goals with this paper is to show how to

link them, and that one actually needs to link them to get the best possible

overall results.

We will therefore start with a rather global introduction. More closely

related literature is discussed in Section 2.

1.1 Abstracted Methods

In the formal-methods community, one tries to use established speci�cation

techniques to specify requirements and actual protocols unambiguously and

with a clear semantics. Moreover, most work aims at proofs that are at least

automatically veri�able and if possible automatically constructed.

One always needs some security-speci�c work, e.g., to model an adversary

controlling the network and to formalize speci�c security requirements in the

given language. The earliest work on tool support was rather speci�c, e.g., the

Interrogator [28] and the NRL protocol veri�er [25], while nowadays most work

is based on standard languages like CSP, e.g., [36,24], or the �-calculus [2] and

general-purpose veri�cation tools.

Where one aims at tool-supported proofs, cryptographic primitives are al-

most always abstracted from in a way introduced in [12]: 2 Each cryptographic

operation is treated as a basic operation in an abstract data type or a term

algebra. For instance, there is a pair of operators EX and DX for asymmetric

encryption and decryption with a key pair of a participant X. The result of

two encryptions of a message m from a basic message space M is not repre-

sented as another message from M , but as the term EX(EX(m)). One then

de�nes cancellation rules, in particular DX(EX(t)) = t for all terms t. A basic

assumption for proofs in such a model is that equations that cannot be derived

from the explicitly given ones do not hold. Hence, in terms of abstract data

types, one works in an initial model of the given formulas. (This model not

only underlies papers like the ones cited above, but also the semantics of BAN

logic [3,41].)

In most other applications of formal methods, one does not restrict oneself

to initial models, but in security, one needs them because one typically wants

to show inequalities, e.g., that the set of messages an adversary can learn does

not contain a certain secret message.

A problem with all these models is the missing link between the chosen

abstractions and the real cryptographic primitives as de�ned and sometimes

proven in cryptography. Hence all the techniques, even actual proofs in the

2 Other approaches closer to cryptography are treated in Sections 1.6 and 2.1.

2

Pfitzmann, Schunter and Waidner

Dec Apk

b*

cj

mj

cj

mj

m*0,m*1

c
b∈R{0,1}

{

{

Repeat

Repeat,
if cj ≠ c

Fig. 1. Cryptographically secure asymmetric encryption

abstraction (no restriction to a �nite number of protocol executions etc.), are

only a way of rapidly discovering some errors with respect to cryptographic

reality. We will come back to this with small (and \made-up") examples after

presenting a cryptographic de�nition.

1.2 Cryptographic De�nition of Asymmetric Encryption

For comparison with the abstraction above, let us present the cryptographic

de�nition of secure asymmetric encryption. It comprises adaptive chosen-

message attacks and secrecy of any partial information about the encrypted

message. This is the strongest de�nition considered in cryptography. Several

di�erent de�nitions, both concerning partial information and active attacks,

have all been proven equivalent [26,6]. Hence cryptographers are quite satis�ed

to have captured the concept adequately. E�cient systems provably secure in

this strong sense under reasonable assumptions are known [11].

One de�nes an encryption system as a triple of polynomial-time algorithms

(gen, E, D), where gen and E are probabilistic. On input a security parameter

k, gen outputs a key pair (sk; pk). E and D are encryption and decryption,

and an equation denoting correct encryption is required as above, i.e., for

all key pairs (sk; pk) from the range of gen, and all messages from a certain

message space, D(sk; (E(pk;m)) = m.

For the security, one considers the following interaction between an arbi-

trary probabilistic polynomial-time interactive adversary A and an attacked

participant Dec (\decryptor"), see Figure 1. 3 Initially, the attacked partic-

ipant generates a key pair and sends pk to A. The adversary may then ask

Dec to decrypt chosen ciphertexts cj. At some point, A instead chooses two

messages m�

0
; m�

1
and Dec encrypts a randomly chosen one of them. The

choice is indicated by a bit b, i.e., c = E(pk;m�

b).
4 Then A may continue the

chosen-ciphertext attack, except that Dec now refuses to decrypt the speci�c

3 The underlying computational model for both is interactive probabilistic Turing ma-

chines [18].
4 The choice of two \favorite" messages by the adversary models the secrecy of any partial

information. For instance, if the adversary can evaluate a particular partial information

function on encrypted messages, e.g., their Jacobi symbol as with pure RSA, he would

choose m�

0
;m�

1
with di�erent values under this function and thus �nd out b.

3

Pfitzmann, Schunter and Waidner

ciphertext c. Finally, A outputs a bit b� as its guess at b.

The de�nition is that the probabilities PA(k) that b
� = b for such an at-

tacker A and the security parameter k should only be negligibly larger than

1/2. This is called the class \1/2 + 1/poly(k)". It means that for any poly-

nomial Q there exists a parameter k0 2 N such that for all k > k0,

PA(k) �
1

2
+

1

Q(k)
:

The probability is taken over all probabilistic choices of Dec and A, in partic-

ular the key generation, the probabilism in the encryption function and the

adversary's probabilistic choices.

1.3 Comparison

Obviously, the de�nition of asymmetric encryption in cryptography and its

abstraction are not very similar. We do not even mainly mean obvious di�er-

ences like the explicit restriction to polynomial-time adversaries and the error

probability 1=Q(k)|these are facts from which you might reasonably want to

abstract. The main point is that this de�nition makes no attempt to cover

all inequalities that are assumed in the abstraction; it concentrates fully on

knowledge about the cleartext given the ciphertext.

For example, a protocol might use a hash function H and attach H(m)

to a message m for redundancy in an integrity check. Then tests of the form

tail(m) = H(head(m)) occur, where tail extracts the end of the message of

appropriate length for hash values and head takes the rest. Now consider the

equation

tail(E(m)) = H(head(E(m))):

In the abstraction, one would certainly not add it to the model, because it does

not hold for most encryption systems. Nevertheless, one can easily construct

some cryptographically secure encryption systems where this equation always

holds: Simply take any secure encryption system and augment all ciphertexts c

by H(c). It is easy to see that this has no in
uence on the security in the cryp-

tographic sense: H(c) gives no new information about the encrypted message

because it is a function of the ciphertext that the adversary knows anyway.

This can be turned into a rigorous cryptographic proof without problems.

This example already shows that the abstract model is not necessarily

faithful with respect to the cryptographic semantics of the primitives. We

are not aware of a real protocol that fails for such reasons (but we have not

searched), but one could make up arti�cial ones that do. For instance, let

us build a �ve-message fair exchange protocol of a payment promise against

something. 5 First, participant X signs a message m1 that contains a special

5 Fair exchange means that either both parties should obtain the other's item or none.

Here we sketch an optimistic protocol, where a third party can be called upon in incorrect

protocol runs to restore fairness, typically if the last messages is not sent.

4

Pfitzmann, Schunter and Waidner

Abstract
protocol

Abstract
primitives

Concrete
primitives

Concrete
protocol

Abstract
goals

Concrete
goals

uses

abstraction
replace
primitives

general
cryptographic
semantics

uses

fulfils

fulfils

Fig. 2. Faithful abstraction. Bold arrows should be de�ned once and for all, normal

ones have to be provided once per protocol. Dashed arrows should then follow

automatically. The gray part does not really exist yet.

signature test key pk0 for this protocol run and says that the promise will

hold if any message of the form (m;H(m)) is signed with respect to pk0. X

will actually sign such a message m5 in the last protocol round. In between,

however, he sends some encrypted value E(m3), also signed with sk0. Now,

an adversary can use sign(sk0; E(m3)) as sign(sk
0; m5) because the only test

made on m5 is tail(m5) = H(head(m5)). Hence he can hold the honest par-

ticipant to the promise from m1 without having sent the message m4 that he

was supposed to send before m5 for fairness. This problem will not be found

in the abstract model.

Of course, this is a stupid protocol, and we have not even worked it out

fully. The goal is not to show that something is actually \wrong", but to

point out that we have no guarantee that it is \right" in a certain sense that

would be nice to have. This is shown in Figure 2. The top layer shows the

abstraction; there are protocols built from abstracted primitives and proven

secure with respect to certain abstract goals. The abstract primitives represent

concrete primitives, and there should be an unambiguous mapping for deriving

a concrete protocol from the abstract one by replacing the primitives. (This

is more or less clear in the models mentioned above, except for some logics of

authentication.) We cannot expect the concrete protocol to ful�l the abstract

goals, as long as those abstract from error probabilities and computational

restrictions on the adversary (which we �nd a good thing). However, we would

like it to ful�l a concrete version of the goals which is automatically derived

from the abstract one by adding similar error probabilities and computational

restrictions. This part does not exist yet|neither the cryptographic semantics

of general abstract goals, nor the proof that the abstract \ful�ls"-relation

implies the cryptographic one.

In the following subsections, we discuss previous approaches that can be

seen in relation to the gray part of Figure 2. We then present (as extended

abstract) a model that �lls some of the existing gaps.

5

Pfitzmann, Schunter and Waidner

1.4 Other Cryptographic De�nitions Relating to Abstractions

For certain primitives the approach from the previous section has already been

taken to some extent: Mere integrity primitives like signature schemes and

symmetric authentication codes can be speci�ed quite well in temporal logic,

see [29]; such speci�cations where also made in other contexts, in particular

�rst in [39]. The special point in [29,31] is that a concrete cryptographic

semantics for general linear temporal-logic formulas de�ning safety properties

was sketched (in a meta-model, not a concrete underlying machine model). It

was shown that applying this model to certain primitives actually gives the

cryptographic de�nition, and that logic implications can be made and carry

over to the cryptographic layer.

Another approach that can be interpreted as basing cryptographic de�-

nitions on abstract speci�cations is the simulatability approach at de�ning

secure function evaluation. There, the abstract speci�cation is simply a func-

tion f on many inputs x1; : : : ; xn. The goal of the cryptographic protocol is

that each participant provides one xi as secret input and they all learn the

result y = f(x1; : : : ; xn), but no further information about the inputs of the

other parties. It was quite an e�ort to actually de�ne what this means in a

cryptographic sense, starting with [42], over approaches that tried to de�ne the

integrity and privacy of such protocols separately, back to formalizations that

more closely resembled the original idea that the protocol should be \just as

good as" a trusted host that simply computed f for the participants [17,4,27,8].

This is called the simulatability approach.

Our de�nition follows this simulatability approach, extending it to more

general abstract speci�cations. More closely related papers that also extend

this approach beyond function evaluation are discussed in Section 2.

1.5 What does Cryptography Gain from Abstractions?

So far we have argued why formal methods could bene�t from cryptographic

semantics. Cryptographers ask the reverse question: Aren't our mathemat-

ically rigorous proofs better than any abstraction? I.e., why have an upper

layer in Figure 2 at all? The answer is that indeed one does not gain ex-

pressiveness and the overall results cannot get more rigorous than done by

hand, but the speci�cations can get nicer, the proofs shorter, and tool sup-

port would be easier for those parts of proofs that are accessible to it. Indeed

cryptographic de�nitions are very long (that in Section 1.2 is one of the sim-

plest), and many have been found faulty or at least have been strengthened

later. Similarly, most proofs are currently actually sketches, and again some

have contained gaps. This will get much worse with larger systems.

6

Pfitzmann, Schunter and Waidner

1.6 Formal Methods without Abstraction

Another research direction is to try and express actual cryptographic de�ni-

tions in formal languages. This is almost orthogonal to our own goal, which is

to provide a class of abstractions with a general cryptographic semantics. I.e.,

you can have both abstracted and non-abstracted de�nitions in either normal

mathematical or formal languages.

For instance, [20] (modeling security in CSP) and [21] contain such aspects,

or, from another direction [40]. More recent examples are [37,22]. Note,

however, that most approaches in this �eld either do not capture the entire

real cryptographic de�nition (e.g., only de�ne that many traces should be

compatible with the adversary's view, but nothing about the probabilities),

or that only the system model is formal, while the probabilistic part is still a

special new semantics in normal mathematical language. Moreover, there is

so far not much tool support in this area, in contrast to Section 1.1.

Yet another approach is to add details like homomorphic properties of

low-level cryptographic primitives (pure RSA is not at all a secure encryption

system in the cryptographic sense) to the abstract data types from Section 1.1,

as initiated in [13]. However, there is then still an initial-algebra semantics

for the properties one has not added, which so far has no cryptographic justi-

�cation.

2 Reactive Simulatability De�nition

As mentioned above, a main hindrance for making abstract security proofs

that are faithful with respect to real cryptographic implementations is that

there is no general notion in cryptography yet for the security of an arbitrary

protocol if secrecy is involved. We will provide this for one class of speci�-

cations by extending the simulatability de�nition from function evaluation to

general reactive systems.

2.1 Related Work and New Aspects in Our Approach

The �rst sketch of a simulatability de�nition for general reactive systems was

given in [16] (Section 6). In [15] (Section 4.1), and also [14], where such a model

was �rst applied to a concrete protocol, the authors interpret this as including

the exact simulation of an internal state. In contrast, we concentrate on

comparison of the interface behaviour, i.e., on possible external observations

of the system. This was �rst sketched in [34] (presented in [30,35]). A similar

sketch can be found in [9].

Speci�c de�nitions in a similar setting were worked out in [5,38,10], i.e.,

they also rely on simulatability, but are \hand-made" for one speci�c spec-

i�cation. Furthermore, due to the speci�c protocol class considered, not all

problems of the general case occur.

Detailed general de�nitions �rst exist in [19,22]. The former are not for

7

Pfitzmann, Schunter and Waidner

completely general speci�cations (straight-line programs)|the main goal was

to present a general technique to construct secure protocols for any permitted

speci�cation|and only for information-theoretic security (in that case, the

simpler user model in that paper is probably equivalent to ours below). Also

our timing will be di�erent. In [22,23], a simulatability de�nition was given

with �-calculus processes instead of the usual interactive probabilistic Turing

machines. Unfortunately none of the prior literature (not even the well-known

papers on simulatability for function evaluation from Section 1.4) was cited.

While having merits as the �rst worked-out version with general reactive sys-

tems, and the �rst with a formal language as machine model, the actual de�-

nition, indistinguishability of two views, seems standard to us and not within

the formal system. Moreover, the speci�cations lack abstraction. For instance,

the speci�cation of secure transmission of a message in [22] consists of the pro-

tocol, only all encrypted messages are replaced by random messages encrypted

with the same cryptosystem. In contrast, we aim at speci�cations that are

considerably simpler than the actual protocols and protocol-independent.

The main novelties of our model are our separate treatment of machines,

honest users, and adversaries (this is already in [34]); a precise synchronous

execution model for this case; and easy inclusion of various trust models.

Further novelties in our work are:

� We have theorems relating several variants of the de�nition, trying to sort

out which design decisions really change the expressiveness.

� A composition theorem, see Section 4.

� A strategy to deal abstractly with certain non-cryptographic imperfections

of most implementations, e.g., the possibility of tra�c analysis.

� Serious-sized examples fully worked out within a general model (see Sec-

tion 3).

Our current de�nitions are in a synchronous model of time. This can be

seen as a restriction compared with asynchronous models, and indeed we �rst

did this to avoid the issue of scheduling between adversary and honest users,

which is also not fully worked out in any other model we are aware of. (Of

course this should be future work.) However, we believe that a synchronous

model is not just a weaker version of an asynchronous one, but any de�nitions

should be made for both. One reason is that there are many synchronous

protocols around because one can often gain e�ciency in a synchronous model.

Secondly, most asynchronous protocols at least need a possibility for user

timeouts in reality anyway. Thirdly, if one entirely abstracts from timing

(e.g., by assuming that the adversary does it all), one cannot discover certain

information leakage resulting from timing. In this sense, a synchronous model

that imposes strict timing requirements on correct machines, and includes

observations of reaction speeds with respect to this scale, is closer to reality.

We also do not cover dynamic corruptions at the moment.

8

Pfitzmann, Schunter and Waidner

2.2 De�nitions

We now brie
y go through our basic de�nitions. The underlying machine

model is standard probabilistic extended �nite-state (PEFS) machines with a

�nite set of in- and output ports (formally a pair of a name and a direction).

Where computational statements must be made, we assume that the machines

are realized by interactive Turing machines, and the notion \polynomial" is

measured in terms of the length of the initial inputs, i.e., the initial content

of the worktape (all as in [18]).

De�nition 2.1 (Structures and Systems) A cryptographic system Sys is

modeled as a set of structures. A structure is de�ned as a triple (M;G; s).

Here M is a set of PEFS machines, called correct machines, G is a graph on

ports, called connection graph, and s a set of ports, called speci�ed ports. All

ports of M should occur in an edge (this is w.l.o.g.). Each edge of G connects

one out- and one input port, and each input port occurs only in one edge. 6

Each multicast connection contains at least one port from M . s is a subset of

the free ports of G, i.e., those that do not occur in M . These free ports are

denoted free(G;M).

This is illustrated together with the following de�nition in Figure 3. Typ-

ically, a cryptographic system is described by an intended structure, and the

actual structures are derived using a trust model. E.g., in a multi-party proto-

col with honest majority any k > n=2 of the intended machines may be present

inM (the others are subsumed by the adversary), or in a fair exchange proto-

col the notary and either of the two exchanging parties. Similarly, the actual

channels are derived from the intended ones, depending on whether the in-

tended channels are private, private and authentic, broadcast etc. We have

concrete derivation rules for all these standard trust models, but as one can

imagine a wide range of trust models we made the above de�nition generic.

De�nition 2.2 (Con�guration) A con�guration of a cryptographic system

Sys is a tuple (M;G; s;H;A;GAH) where (M;G; s) 2 Sys is a structure, A

and H are machines modeling the adversary and the honest users, and GAH

is an additional graph with connections only between A and H. A and H

should use all ports from free(G;M), and no ports of A and H should remain

free (both w.l.o.g.).

Typically, all ports from s are attached to H and all other ports from

free(G;M) to A, i.e., the honest users use precisely the speci�ed ports and

the adversary the rest, e.g., wiretaps. We could actually require this for all

cryptographic examples we have considered so far, but not for all examples

from fault-tolerance. 7 We �nd this model with speci�c honest users much

6 Thus there are internal channels among machines from M and connections between M

and an environment. Multicast is modeled by several edges from the same output port.
7 We could also add a special free output port guess to A, which models A's knowledge, and

later include it in the comparison in De�nition 2.4. But we can show that this is equivalent

9

Pfitzmann, Schunter and Waidner

M1 M2
A

G

H
GAH

s

Fig. 3. Con�guration of a system. The bold part is the structure.

more intuitive than prior models without: Honest users should not be modeled

as part of the machines in M because they are arbitrary, while the machines

have prescribed programs. For example, they may have arbitrary strategies

which message to input next to the system after certain outputs. They may

also be in
uenced in these choices by the adversary, e.g., in chosen-message

attacks on a signature scheme; therefore the graph GAH . Honest users are

not a natural part of the adversary either because they are supposed to be

protected from the adversary. In particular, they may have secrets, and we

want to de�ne that the adversary learns nothing about those except what he

learns \legitimately" from the system (this depends on the speci�cation) or

what the user tells him directly (via the graph GAH).

We can show that several di�erent versions of the following de�nition are

equivalent (see [32]), but we have not found one that does not need a distinc-

tion between speci�ed ports s and other free ports.

For a con�guration, we de�ne probability spaces on the runs (or executions,

or traces). This would be standard for PEFS machines, except for the fact

that adversaries and users cannot be expected to be synchronized with the

system rounds. For the adversaries, this is the well-known model of \rushing

adversaries"; for users, it is new. As a worst case, one might have to de�ne

that adversaries and honest users carry out an arbitrary dialogue within each

round, but we can show that this is equivalent to our following simpler model.

De�nition 2.3 (Runs and Views) Given a con�guration conf and an ini-

tial input for each machine, a probability space of runs is de�ned as follows:

Each round i has four subrounds, and the switching order isMH�A�H�A.

This means that in Subround i:1, the machines fromM and H switch, in Sub-

round i:2 the adversary A, etc. The network transports messages according

to the graph between any two subrounds; if H or A input two messages per

round on a channel to M , M receives their concatenation.

The view of any subset N of the machines can be described by their initial

inputs, the random values they used and the messages they received. It is a

random variable in the space of the runs and written as viewconf ;in(N), where

in denotes the initial inputs. The family of these random variables indexed

by in is called viewconf (N).

to our simpler de�nition.

10

Pfitzmann, Schunter and Waidner

HH

M1,1 M1,2 M2 A2A1
G2

G1

struc1
struc2 ∈ f(struc1) ⊆ Sys2

s1 s2 =
s1E

GAH,1 GAH,2

Fig. 4. Simulatability de�nition with honest users in the simple case s1 = s2. The

hatched part denotes the view of H, which should be indistinguishable.

In the following, we need the cryptographic de�nition of indistinguishabil-

ity of families of random variables, see, e.g., [18]. Perfect indistinguishability

is simply equality; computational indistinguishability is quite similar to the

de�nition of asymmetric encryption: The adversary is given an element from

one of the families and should not be able to guess which one.

For simplicity, we also assume that the initial inputs of all machines are

only a security parameter k. The following de�nition is illustrated in Figure 4.

De�nition 2.4 (Simulatability) Let two systems Sys1 and Sys2 be given

and a function f that maps structures struc1 of Sys1 to sets of \corresponding"

structures of Sys2.
8 For corresponding structures we require free(G1;M1) \

free(G2;M2) � s1 \ s2, i.e., free ports should only have the same name if they

are supposed to correspond to each other.

a) We say that Sys1 is perfectly at least as secure as Sys2 i� for all con�gura-

tions conf
1
= (M1; G1; s1; H;A1; GAH;1) with struc1 = (M1; G1; s1) 2 Sys1,

there exists a con�guration conf
2
= (M2; G2; s2; H;A2; GAH;2) with the

same user H and struc2 = (M2; G2; s2) 2 f(struc1) such that

view conf
1
(H) = view conf

2
(H);

unless H has port names from free(G2;M2)� s2.

b) We say that Sys1 is computationally at least as secure as Sys2 i� the same

as in a) holds for polynomial-time users and adversaries, and with compu-

tational indistinguishability of the families of views instead of equality.

Typically, Sys1 is a \real" system and Sys2 an \ideal" system used as a

speci�cation. Formally, we make no special requirements on ideal systems,

but often each of their structures contains only one machine (called \ideal

host" in cryptography), while the real system is distributed.

The fact that users H that use ports from free(G2;M2)�s2 are excluded is

where the distinction of users and adversary makes a real di�erence. It means

8 In cryptographic examples, f(struc1) is typically the set of all structures with the same

speci�ed ports s, but not in all fault-tolerance examples.

11

Pfitzmann, Schunter and Waidner

that the ideal system may have channels to the adversary and thus make

certain events visible or manipulatable in an abstract way that are not visible

to normal users. This allows us to model systems with certain accepted,

a-priori known vulnerabilities, which is important in practice. If we would

allow H access there, these exact events would have to be indistinguishable

from some events in the real system, which would seriously limit the possible

abstraction. This should become clear in the following example. 9

3 Examples and Accepted Vulnerabilities

We have so far worked out two examples in this model in full detail, a protocol

for computationally secure (private and authentic) message transmission and

one for optimistic certi�ed mail. The former is similar to examples already

considered with a simulatability approach (but not in a general model), the

latter is new. Both consider an arbitrary number of participants that can

run many instances of the basic protocol, because only then typical protocol

failures show up. In both cases we have a protocol-independent speci�cation,

and then a proof for one speci�c protocol.

We can only sketch the �rst example here to show how our de�nition with

honest users permits easy and truly abstract speci�cations, in particular in

connection with accepted vulnerabilities as one often �nds them in real-world

applications. (See [33] for the second example.)

The nicest abstract model for secure message transmission would be one

machine that models a perfect network, i.e., users can input messages with

addresses, and the messages are delivered precisely to these addresses in the

same order. However (as also observed, e.g., in [1]), this would not allow

implementations by normal use of encryption, even perfect encryption with

one-time pads, unless one also hides the tra�c patterns by constantly sending

encrypted meaningless messages (\link encryption"), which wastes too much

bandwidth for most applications.

Interestingly, not even link encryption with one-time pads on authentic

channels (to avoid destruction of messages) is as secure as this \nicest" ideal

system in the synchronous model: In the real system, a message between two

honest participants is �rst switched by the sender's machine, then the recip-

ient's machine. The ideal system must represent the same delay. However,

an adversary to whom a message is addressed (i.e., he can decrypt it), can

obtain it without the delay of his own machine and send an answer back in

the same way. Thus the answer arrives two rounds earlier than it would in

the nicest ideal system. This is one of the subtleties of the synchronous model

mentioned in Section 2.1 that might be abstracted away in an asynchronous

model, but indicates a possible problem with timing in real life. (One cannot

9 It should also become clear in the example that this is not the place for cryptographic

vulnerabilities, neither unavoidable ones like the very small error probabilities, nor those

whose absence should be proved.

12

Pfitzmann, Schunter and Waidner

IH

G

adv_out'
busy'
adv_in'
suppress'

in(h1) out(h1)

• • •
in(hm) out(hm)

adv_out
busy

adv_in
suppress

in'(h1) out'(h1) in'(hm) out'(hm)
s

Fig. 5. A structure of the ideal system for secure message transmission.

assume that the honest users have no real-time clocks; hence such a speed

di�erence may lead to di�erent user behaviour in the real world.)

We therefore use the following ideal system as the speci�cation, see Fig-

ure 5.

De�nition 3.1 (Ideal System for Secure Message Transmission) Let a

setMsg of messages of bounded length be given, a number rnds of rounds, and

a number n of participants, and let N = f1; : : : ; ng. Then an ideal system

SysMT
2

for message transmission is given as follows: For any set H � N

of honest participants there is one structure with only one machine, called

ideal host IH (we omit an index H). It has one pair of free in- and output

ports per honest participant, and these form the set s of speci�ed ports. 10

Additionally, it has four ports for the adversary. adv in0 and adv out0 are for

sending and receiving messages, while busy0 and suppress0 correspond to the

imperfection of the tra�c: In busy0, the adversary gets one bit of information

for each message is transit, and with suppress0 he can suppress it (modeling

that cryptography cannot guarantee availability).

We model that in each round i > 0, each participant can send one message

to each other participant. Hence in each round i, the ideal host IH accepts

inputs of the following form, where A = N �H:

ini :H�N !Msg;

adv ini :A�H !Msg;

suppressi :H�H ! f0; 1g:

Here ini(h; �) is the vector of inputs at port in(h), and intuitively ini(h; l) is

the message user h wants to send to user l in this round. We use � for \no

message". The switching function is, for h; l 2 H and a 2 A:

10Having free ports in the graph G, instead of simply leaving some ports of IH free, may

seem strange here. But in a few examples, the structures speci�cally o�er multicast con-

nections to their environment.

13

Pfitzmann, Schunter and Waidner

busyi(h; l) :=

8<
:
0 if ini(h; l) = �

1 else;

outi(h; l) :=

8<
:
� if suppressi(h; l) = 1

ini�1(h; l) else;

outi(a; l) := adv ini(a; l);

adv outi(h; a) := ini(h; a):

The matrices busyi and adv outi are output at the corresponding adversary

ports, and each vector outi(�; l) at port out(l).

Note how normal messages have a delay of one round, while messages to

and from the adversary have not, and that \busy" and \suppress" are just

1-bit signals for each message, i.e., as abstract as possible.

We can now see why we have to distinguish the speci�ed ports s, and to

forbid H to use ports from free(G2;M2) � s2 in the simulatability de�nition:

We do not want the real system to have ports busy and suppress. Instead, it

will have normal channels where encrypted messages will pass. Hence, while

we require that the events at the user ports in(h) and out(h) are simulated

indistinguishably, we do not require this for the ports busy and suppress.

This becomes even more important in a larger example like our certi�ed mail

example, where, e.g., one \busy" signal per protocol run is enough, i.e., we

do not even need one per message. This simpli�es the abstract speci�cation

and enables it to be protocol-independent. (Recall the alternative in [22]

mentioned in Section 2.1.)

Scheme 1 (Real message transmission, sketch) In the actual system

SysMT
1

that we prove to be as secure as the ideal system, there is one machine

Ml per intended user l, and all are connected by point-to-point channels. The

actual structures (for any subset H of honest participants) are derived with a

standard trust model with insecure channels, except that authentic channels

are needed for key exchange (only used in Round 0): Only the machines Mh

with h 2 H are present in M , the insecure channels are split into one channel

to and one from the adversary, and the authentic channels get the adversary

as an additional recipient.

In each round i > 0 (after initial key generation and exchange), each

correct machine Mh transforms its user inputs ini(h; l) into network messages

of the following form:

netwi(h; l)

8<
:
El(h; signh(ini(h; l); i; l)) if ini(h; l) 6= �,

� else.

E denotes encryption as before, and sign signing, including the message in

clear. The comma denotes tuple composition, not concatenation, and the

implementation must guarantee unambiguous decomposition.

14

Pfitzmann, Schunter and Waidner

≥

Real system

SysMT
2

Sysprot
1

≥
Sysprot

2

Design Specification

Sysprot
1

SysMT
1

Fig. 6. Simplest form of the composition theorem. The symbol \�" stands for \at

least as secure as".

In each round i > 0, Mh also decomposes messages netw0

i�1
(l; h) from the

network as follows. Let

(fromi�1
(l; h); sig i�1

(l; h)) Dh(netw
0

i�1
(l; h))

or, if the decryption or decomposition fails, let both components be �. Then

outi(l; h) :=

8<
:
m if fromi�1

(l; h) = l ^ test l(sig i�1
(l; h)) = (m; i� 1; h)

� else.

We can prove that this system is as secure as the ideal system SysMT
2

if

the encryption system and the signature system are secure under their normal

cryptographic de�nitions, in particular the one shown in Section 1.2. Omit-

ting any parameter from the network messages, e.g., the outer h, makes the

protocol insecure. But of course, quite di�erent protocols may be as secure as

the same ideal system.

4 Composition

One of the main advantages of our model is a composition theorem. We will

brie
y sketch what we mean by this and its relation to formal methods. 11

Consider the example of secure message transmission. The ideal system

SysMT
2

contains no probabilism at all, to say nothing of encryption operations

etc. It is a very simple, non-distributed system. If a larger protocol Sysprot
1

makes use of secure message transmission, we therefore want to design it

assuming that the message transmission is done by the ideal system SysMT
2

.

If the protocol uses cryptography in no other form, we can therefore design

it without any probabilism etc., and thus hopefully in a simple language and

even with the support of standard tools. Hence SysMT
2

plays the role of an

abstract primitive in Figure 2.

Now the larger protocol will also have some speci�cation; we call this

Sys
prot
2

. It corresponds to the abstract goals in Figure 2. This is shown in

Figure 6. Although we also wrote the right part with \�", denoting \at least

11We have a proof, but at the time of this writing sketchy, while the examples sketched in

Section 3 are fully worked out in [32,33].

15

Pfitzmann, Schunter and Waidner

as secure as", we would hope that the proof does not involve any arguments

with probabilities etc. because both systems are deterministic; hence it should

be accessible to formal proof methods.

What the composition theorem gives us is the left part: The real higher

protocol using the real secure message transmission system must be as secure

as its design that used the speci�cation of the message transmission system.

Of course, the theorem does this generally, not only for message transmission

on the lower layer. Moreover, \�" is indeed transitive, as suggested in the

�gure.

The theorem can be extended to the composition of several systems, and

parallel composition is a special case.

Another theorem that we have actually proven is a kind of right part of

Figure 2 for the case where the abstract goals are not a speci�cation by an

ideal system, but by linear-time logical expressions over the speci�ed ports:

If a system Sys2 ful�ls such requirements, and Sys1 is as secure as Sys2
(with respect to a mapping that keeps the speci�ed ports constant) then so

does Sys1, in a well-de�ned notion of computationally ful�lling linear-time

formulas.

5 Relation to Formal Methods

The main relations to formal methods were already sketched in Section 4:

Our current speci�cations of abstract ideal hosts are mathematically rigorous,

but informal. However, they clearly lend themselves to a range of normal

speci�cation techniques. Then the composition theorem shows ways how to

prove larger systems secure without much special attention to the speci�c

cryptographic semantics.

Our abstractions in the two large examples are on a rather high layer,

e.g., we did not present an abstract model of encryption, but immediately of

secure message transmission. It will certainly be interesting to see how much

lower one can get or to what extent current cryptographic protocols have to

be and can be redesigned to use only the abstract primitives that do have a

cryptographic semantics. Here combinations with some of the less abstract

formalizations mentioned above will certainly be interesting.

References

[1] M.

Abadi, Protection in Programming-Language Translations, 25th International

Colloquium on Automata, Languages and Programming (ICALP), LNCS 1443,

Springer-Verlag, Berlin 1998, 868{883

[2] M. Abadi, A. D. Gordon, A Calculus for Cryptographic Protocols: The Spi

Calculus, 4th Conference on Computer and Communications Security, ACM,

16

Pfitzmann, Schunter and Waidner

New York 1997, 36{47

[3] M. Abadi, M. R. Tuttle, A Semantics for a Logic of Authentication, 10th

Symposium on Principles of Distributed Computing (PODC), ACM, New York

1991, 201{216

[4] D. Beaver, Secure Multiparty Protocols and Zero Knowledge Proof Systems

Tolerating a Faulty Minority, Journal of Cryptology 4/2 (1991) 75{122

[5] M. Bellare, R. Canetti, H. Krawczyk, A modular approach to the design and

analysis of authentication and key exchange protocols, 13th Symposium on

Theory of Computing (STOC), ACM, New York 1998, 419{428

[6] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway, Relations Among Notions of

Security for Public-Key Encryption Schemes, Crypto '98, LNCS 1462, Springer-

Verlag, Berlin 1998, 26{45

[7] M. Blum, S. Micali, How To Generate Cryptographically Strong Sequences Of

Pseudo Random Bits, 23rd Symposium on Foundations of Computer Science

(FOCS), IEEE, 1982, 112{117

[8] R. Canetti, Studies in Secure Multiparty Computation and Applications, Thesis,

Department of Computer Science and Applied Mathematics, The Weizmann

Institute of Science, June 1995, revised March 1996

[9] R. Canetti, Security and Composition of Multi-party Cryptographic Protocols,

Theory of Cryptography Library 98-18, June 1998, last revision August 1999,

http://philby.ucsd.edu/cryptolib/

[10] R. Canetti, S. Goldwasser An E�cient Threshold Public Key Cryptosystem

Secure Against Adaptive Chosen Ciphertext Attack, Eurocrypt '99, LNCS 1592,

Springer-Verlag, Berlin 1999, 90{106

[11] R. Cramer, V. Shoup, A Practical Public Key Cryptosystem Provably Secure

Against Adaptive Chosen Ciphertext Attack, Crypto '98, LNCS 1462, Springer-

Verlag, Berlin 1998, 13{25

[12] D. Dolev, A. C. Yao, On the Security of Public Key Protocols, IEEE

Transactions on Information Theory 29/2 (1983) 198{208

[13] S. Even, O. Goldreich, A. Shamir, On the Security of Ping-Pong Protocols when

Implemented using the RSA, Crypto '85, LNCS 218, Springer-Verlag, Berlin

1986, 58{72

[14] R. Gennaro, S. Micali, Veri�able Secret Sharing as Secure Computation,

Eurocrypt '95, LNCS 921, Springer-Verlag, Berlin 1995, 168{182

[15] O. Goldreich,

Secure Multi-Party Computation, Working Draft, Version 1.1, September 21,

1998, available from http://www.wisdom.weizmann.ac.il/users/oded/pp.htm

[16] O. Goldreich, S. Micali, A. Wigderson, How to play any mental game|or|a

completeness theorem for protocols with honest majority, 19th Symposium on

Theory of Computing (STOC), ACM, New York 1987, 218{229

17

Pfitzmann, Schunter and Waidner

[17] S. Goldwasser, L. Levin, Fair Computation of General Functions in Presence of

Immoral Majority, Crypto '90, LNCS 537, Springer-Verlag, Berlin 1991, 77{93

[18] S. Goldwasser, S. Micali, C. Racko�, The Knowledge Complexity of Interactive

Proof Systems, SIAM Journal on Computing 18/1 (1989) 186{207

[19] M. Hirt, U. Maurer, Player Simulation and General Adversary Structures in

Perfect Multi-Party Computation, Swiss Federal Institute of Technology (ETH),

Zurich, Dec. 1997, invited to a special issue of Journal of Cryptology, available

from http://www.inf.ethz.ch/personal/hirt/publications/journal.ps.gz

[20] J. Jacobs, Security speci�cations, 1988 Symposium on Security and Privacy,

IEEE, Washington 1988, 14{23

[21] E. S. Lee, B. W. Thomson, P. I. P. Boulton, R. E. Soper, Composable Trusted

Systems, CSRI, University of Toronto, Report CSRI-272, May 1992

[22] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, A Probabilistic Poly-

Time Framework for Protocol Analysis, 5th Conference on Computer and

Communications Security, ACM, New York 1998, 112{121

[23] P. Lincoln, J. Mitchell, M. Mitchell, A. Scedrov, Probabilistic Polynomial-

Time Equivalence and Security Analysis, Formal Methods 1999, available at

ftp://theory.stanford.edu/pub/jcm/papers/fm-99.ps

[24] G. Lowe, Breaking and �xing the Needham-Schroeder public-key protocol using

FDR, Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), LNCS 1055, Springer-Verlag, Berlin 1996, 147{166

[25] C. Meadows, Using Narrowing in the Analysis of Key Management Protocols,

1989 Symposium on Security and Privacy, IEEE, Washington 1989, 138{147

[26] S. Micali, C. Racko�, B. Sloan, The Notion of Security for Probabilistic

Cryptosystems, SIAM Journal on Computing 17/2 (1988) 412{426

[27] S. Micali, P. Rogaway, Secure Computation, Crypto '91, LNCS 576, Springer-

Verlag, Berlin 1992, 392{404

[28] J. K. Millen, The Interrogator: A Tool for Cryptographic Protocol Security, 1984

IEEE Symposium on Security and Privacy, IEEE, Washington 1984, 134{141

[29] B. P�tzmann, Sorting Out Signature Schemes, 1st Conference on Computer

and Communications Security, ACM, New York 1993, 74{85

[30] B. P�tzmann, Cryptographic Semantics of Formal Speci�cations, presented

at Colloquium on Formal Methods and Security, Isaac Newton Institute,

University of Cambridge, April 23, 1996

[31] B. P�tzmann, Digital Signature Schemes|General Framework and Fail-Stop

Signatures, LNCS 1100, Springer-Verlag, Berlin 1996

[32] B. P�tzmann, M. Schunter, M. Waidner, Secure Reactive Systems, IBM

Research Report RZ 3206 (#93252), IBM Research Division, Z�urich, Feb. 2000

18

Pfitzmann, Schunter and Waidner

[33] B. P�tzmann, M. Schunter, M. Waidner, Provably Secure Certi�ed Mail, IBM

Research Report RZ 3207 (#93253), IBM Research Division, Z�urich, Feb. 2000

[34] B. P�tzmann,

M. Waidner, A General Framework for Formal Notions of \Secure" System,

Hildesheimer Informatik-Berichte 11/94, Universit�at Hildesheim, April 1994,

available at http://www.semper.org/sirene/lit/abstr94.html#PfWa 94

[35] B. P�tzmann, M. Waidner, Extensions to Multi-Party Computations, The 1998

Weizmann Workshop on Cryptography, June 16-18th, Rehovot, Israel, slides

available at http://www.semper.org/sirene/lit/abstr98.html#PfWa3 98

[36] A. W. Roscoe, Modelling and Verifying Key-Exchange Protocols Using CSP

and FDR, 8th Computer Security Foundations Workshop, IEEE, Los Alamitos

1995, 98{107

[37] S. Schneider, A. Sidiropoulos, CSP and Anonymity, 4th European Symposium

on Research in Computer Security (ESORICS), LNCS 1146, Springer-Verlag,

Berlin 1996, 198{218

[38] V. Shoup, On Formal Models for Secure Key Exchange, IBM Research

Report RZ 3076 (##93122), IBM Research Division, Z�urich, November 1998,

also Theory of Cryptography Library 99-12, last revised November 1999,

http://philby.ucsd.edu/cryptolib/

[39] P. Syverson, C. Meadows, A Logical Language for Specifying Cryptographic

Protocol Requirements, 1993 Symposium on Research in Security and Privacy,

IEEE, Los Alamitos 1993, 165{177

[40] M. J. Toussaint, A New Method for Analyzing the Security of Cryptographic

Protocols, IEEE Journal on Selected Areas in Communications 11/5 (1993)

702{714

[41] G. Wedel, V. Kessler, Formal Semantics for Authentication Logics, 4th

European Symposium on Research in Computer Security (ESORICS), LNCS

1146, Springer-Verlag, Berlin 1996, 219{241

[42] A. C. Yao, Protocols for Secure Computations, 23rd Symposium on Foundations

of Computer Science (FOCS), IEEE, 1982, 160{164

[43] A. C. Yao, Theory and Applications of Trapdoor Functions, 23rd Symposium

on Foundations of Computer Science (FOCS), IEEE, 1982, 80{91

19

