
A Java-based distributed platform for multilateral
security♣

A. Pfitzmann**, A. Schill*, A. Westfeld**, G. Wicke**, G. Wolf*, J. Zöllner*

Dresden University of Technology, 01062 Dresden, Germany
*Institute for Operating Systems, Databases and Computer Networks

**Institute for Theoretical Computer Science
{pfitza, schill, westfeld, wicke, g.wolf, zoellner}@inf.tu-dresden.de

Abstract. We describe a new approach and system platform for enabling
multilateral security in distributed applications. The major goal is to support
users configuring their end systems and to negotiate among security
requirements of different users with heterogeneous roles. Typical security
features such as confidentiality or integrity of transmitted data are presented to
the user at different levels of abstraction based on an inheritance hierarchy,
according to his background knowledge and experiences. The system platform
is implemented in Java, with distributed interaction based on Java RMI (Remote
Method Invocation). It enables flexible integration of existing security libraries
and facilities. As a validation example, we present a teleshopping scenario that
has been realized using the support platform.
Keywords: Multilateral security, Java RMI, distributed applications, distributed
platforms, teleshopping

1 Introduction

In a typical distributed application, there are several parties interconnected by a
network interacting with each other. Each of the parties may have different security
requirements; as an example, a teleshopping scenario with clients, merchants and a
bank may be considered and will be detailed later. Allowing each of them to express
these requirements and actually use their chosen level of security is what multilateral
security is about. In real life, multilateral security is generally well accepted, e.g. when
negotiating and signing contracts.

There are technical as well as organizational means to achieve this goal. The
following paper concentrates on the technical aspects. In particular, we present a new
approach and system platform to make multilateral security possible and usable for the
end-user. It enables (1) pre-configuration of security issues of local systems and
distributed applications (2) negotiation of the configurations between communicating

♣ This research is sponsored by the German Ministry of Education, Science, Research and

Technology (BMBF).

users, and (3) different levels of abstraction concerning the presentation of security
features to the end user and application programmer. This way non-experts in the field
of cryptography and security are explicitly supported to use our multilateral security
platform.

The system implementation is based on Java. Remote interactions as well as
coarse-grained local interfaces are mapped onto Java RMI (Remote Method
Invocation). The RMI allows easy and transparent distribution of applications (and
method calls, for that matter).

Inheritance features of Java are intensively used for organizing security
mechanisms at different abstraction levels that are accessible via an API (Application
Programming Interface). Existing security facilities can be integrated flexibly; for
example, Java-to-C mappings were exploited for incorporating C-based security
libraries.

The paper is organized as follows. Section 2 discusses related approaches in the
areas of security facilities and platforms. Section 3 presents the design and
implementation of our security platform. Major conceptual aspects are configuration,
negotiation and abstraction. Section 4 presents a teleshopping scenario that was built
with our support platform as a validation example. Finally, Section 5 discusses our
first experiences and gives an outlook to future work.

2 Related approaches / foundations

SSL [SSL] operates on the network socket layer, focusing on end-to-end connection
security. It allows for different configurations on the client´s side and a pseudo-
negotiation between client and server. Configuration is limited to selecting one or
more of some predefined "ciphersuites" which describe fixed combinations of
algorithms for key exchange, encryption and hashing (e.g. DES, RSA and SHA)
referenced by an index number. The client sends a list with its preferred ciphersuites
to the server. The server then accepts the highest-ranked one it can support or denies
the connection. Further negotiations are not intended.

PLASMA [Gehr_94] does not have the perspective of multilateral security when
speaking of negotiation. This platform deals with divergences of security policies of
autonomous domains, end-systems and applications but not the end-user. Local rules
as formal security policies are the negotiation base. Although they do not directly
support the security requirements of users and do not offer a user-oriented abstraction
of security features like our platform they try to design a possibly automatic
negotiation.

The Java Security API [Java_97] is Suns approach to provide security for Java
programs. It supports - to a certain degree - abstraction of security mechanisms, but
the actually used algorithms have to be determined at development time, thus giving
up possible flexibility. The API is still under development and therefore not
exceedingly extensive. The Cryptix libraries by Systemics, Inc. [Cryp_97] are another
product for Java Security. They provide a lot of implemented algorithms and are
freeware, but are not standardized like the Java API. Both lack the flexibility and

abstraction we need for our platform, but are integrated as providers for cryptographic
algorithms.

Most other security related platforms we know, e.g. DCE [DCE_92], CORBA
[CORB_97], TINA [StWi_97], Microsoft CAPI [Wiew_96] or PLASMA [Kran_96,
PLASMA], offer security features such as user authentication (DCE Kerberos) or
encryption (Microsoft CAPI).

None of these realize multilateral security in a convincing way, cf. [WSWZ_97].

3 Design and Implementation of the support platform

What we need for multilateral security is:
1. user-defined external configuration of the security features of applications to

express security preferences,
2. negotiation between the systems of users to overcome the problems of differing

configurations,
3. an abstract view on security mechanisms as well as an abstract API to provide the

flexibility needed for external configuration.
Our technical approaches to these three problems are discussed in the following

chapters. Figure 1 shows the architecture of the whole system.

6HFXULW\�0DQDJHPHQW6HFXULW\�7RROV

$SSOLFDWLRQ�3URJUDPPLQJ
,QWHUIDFH

8VHU

$SSOLFDWLRQ
6HFXULW\�0DQDJHPHQW

,QWHUIDFH

3URWRFROV
6HUYLFHV

0HFKDQLVPV

1HJR�
WLDWLRQ

&RQ�
ILJX�
UDWLRQ

'%&
RQ

WU
RO

,Q
WH
UI
DF

H�
�

&
RQ

WU
RO

,Q
WH
UI
DF

H�
�

Fig. 1. Architecture of the support platform

The major interfaces shown in Figure 1 are:
− the Security Management Interface (SMI) which consists mainly of the presentation

of the configuration (see 3.1) and negotiation (see 3.2) to the end-user,
− the Application Programming Interface (API) (see 3.3),
− the Control Interface 1 which provides access for the Security tools (and the API,

respectively) to the current configuration, and
− the Control Interface 2 which provides similar functionality for the negotiation

component.
The Control Interfaces offer a simple method to access the configuration data. They

are implemented using RMI, which would allow the distribution of the platform,
although this is not planned yet.

3.1 Configuration

The configuration is the main part of the platform visible to the end-user. Therefore,
special attention had to be paid to the ease of use for the inexperienced user. Our
solution to this problem is the following:

User interface: The user interface enables end-users to configure security
mechanisms and services for their system and distributed applications easily. The
system security configuration interface (see Figure 2) is part of the SMI and provides
the possibility to enter central configuration data which are the base for the security
configuration of all distributed applications. For each security requirement such as
confidentiality, integrity, anonymity or accountability, the user can choose his
preferred security mechanisms. The system provides a list of available mechanisms.
Further security mechanisms can be downloaded from platform-supporting Internet
servers. The end-user has the possibility to accomplish detailed settings for each
security mechanism, e.g. choosing of different DES modes (ECB, CBC, OFB, ...) or
the key length for an RSA key. To support the end-user, the platform includes an
initial system configuration file at delivery.

Fig. 2. System security configuration

Building on the central system security configuration, the end-user can express his
security requirements for each application within the application security
configuration (see Figure 3).

Fig. 3. Application security configuration

The user has to make a decision about which security requirements he would like to
be met for this specific application. A mouse click on the icons leads to the more
detailed configuration similar to the system security configuration (see Figure 2).

User support: The modules rating and plausibility check provide further user support
for the configuration of system and applications. The rating helps non-experts to verify
the achieved security level of security mechanisms by means of selected evaluation
criteria. The platform offers two kinds of rating: absolute rating giving detailed
information about the security each mechanism provides, such as cryptographic
quality, performance and maintenance, and relative rating listing evaluations for
several mechanisms and supporting especially non-experts in comparing of unknown
security mechanisms. The example in Figure 4 shows a comparison between DES and
IDEA. These ratings have to be certified.

One ore more criteria can be defined as essential. The overall placing results from
the lowest value among the essential criteria and the mathematical average of all
criteria.
algorithm DES IDEA

security of the algorithm

cryptographic quality 4 4

resources needed for cryptoanalysis 2 4

algorithm implementation DES
(SSLeay)

IDEA
(cryptix-java 2.2)

security of the implementation 2 2

operational costs 3 3

costs if not available at local system

purchase price 1 1

installation, logistics, maintenance 3 2

overall placing 15/6 = 2.5 16/6 = 2.7

Fig. 4. Relative rating for DES and IDEA

Before saving the system and application security configuration data in a secured
database, the platform checks the consistency of the settings – the so-called
plausibility check. For this purpose, the platform tests the configuration data on the
basis of rules (see below) and notifies the user if it found a missetting or
unrecommended combination. Such plausibility rules are for instance:
− if anonymity of the sender then encryption recommended,
− if anonymity of the sender then no digital signatures,
− if anonymity of the recipient then encryption recommended.

3.2 Negotiation

All participants in the distributed applications can configure their systems according to
their security requirements, as described in Chapter 3.1. Obviously, differences in the
configurations will emerge. The natural way to overcome these differences in real life
is negotiation between the parties involved. In order to free the user of needless
interactions, the negotiation should work as automatically as possible.

The negotiation itself is split into two parts. First, the parties agree on general
security requirements, such as confidentiality or accountability. After that, the
mechanisms actually used to accomplish these goals are negotiated.

In Figure 5, the designed protocol for phase 1 is illustrated. It basically shows that
both partners create a proposal for a possible common security configuration. These
proposals are exchanged and evaluated. The initiator of the communication creates a
further proposal which incorporates the proposals of all partners. If the system can not
generate this proposal the negotiation component informs the user that no common
ground for secure communication can be found. As a result, at least one of the users
has to change his security configuration or the communication can not take place - just
like in real life.

In phase 2, building on an achieved agreement on general security requirements,
the systems negotiate actual crypto-algorithms. The principle is the same as described
above, but the solution to hard conflicts extends to the possibility to load new
mechanisms from a server or the incorporation of a security gateway which can
transform between different formats and mechanisms.

As shown in Figure 1, the negotiation component is the central access point to a
computer which runs applications developed using our platform. The Java RMI is used
for the communication between the negotiation components of the different systems.
Because the negotiation components act as the gateway of a system to the outside
world, RMI is actually used for all the communication between the distributed
applications or the parts thereof.

Fig. 5. The negotiation protocol for phase 1

3DUWQHU�$ 3DUWQHU�%

JHQHUDWH3URSRVDO JHQHUDWH3URSRVDO

3
$

� ��^��WUDQVDFWLRQ!���TXDOLILHG�VHFXULW\

UHTXLUHPHQW!�`

3$

3%

FKHFN3URSRVDO

FKHFN3URSRVDO

JHQHUDWH3URSRVDO

3$
�DFFHSW

DFFHSW FKHFN3URSRVDO

/HJHQG�

3$��3% SURSRVDO��QHJRWLDWLRQ�SDFNHW��RI�SDUWQHU�$�RU�%��OLVW�ZLWK�SULRULWLHV
3$
 DOWHUQDWLYH�SURSRVDO�RI�VHFXULW\�UHTXLUHPHQWV�DFFRUGLQJ�WR�WKH�NQRZOHGJH�DERXW�3%

3
%
� ��^��WUDQVDFWLRQ!���TXDOLILHG�VHFXULW\

UHTXLUHPHQW!�`
3
$
� ��^��WUDQVDFWLRQ!���TXDOLILHG�VHFXULW\

UHTXLUHPHQW!�`

Basically, the interface consists of the remote method DFFHVV� This method is
used exclusively by the negotiation components. The applications use the method
VHQG, which is implemented by the negotiation component of the local system. In
Figure 6, the interface for the method DFFHVV�and the (current) implementation of
VHQG are shown.

Fig. 6. The usage of RMI for communication

The negotiation component redirects the (via DFFHVV) incoming messages to the
appropriate applications.

3.3 The API

The API (Application Programming Interface) has to be flexible and abstract in
order to allow external configuration. Figure 7 shows the hierarchy for the
cryptographic core functions.

Figure 8 shows an excerpt of the API functions. Actually, the subtree for
confidentiality is shown. Note the absence of any functions dealing with actual
algorithms. Providing these would significantly limit the possibility of external
configuration. The lower the abstraction level used by the developer, the less flexible
the application is to configure. For example, if the developer chooses the function
encrypt(), it is vital to him that the data are encrypted, not which actual algorithm
is used (in this case, it could be any symmetric or asymmetric encryption algorithm
supported by the platform). If the programmer explicitly chose

���LQWHUIDFH�IRU�UHPRWH�DFFHVV
SXEOLF�LQWHUIDFH�$FFHVV�H[WHQGV�MDYD�UPL�5HPRWH�^
����0HVVDJH�DFFHVV�0HVVDJH�P��WKURZV�MDYD�UPL�5HPRWH([FHSWLRQ�
`

���LPSOHPHQWDWLRQ�RI�VHQG
SXEOLF�0HVVDJH�VHQG�6WULQJ�VHUYHU+RVW��6WULQJ�VHUYHU1DPH�
0HVVDJH�P��LQW�GHVWLQDWLRQ��^
��LI��VHFXU0DQ� ����^
���������FUHDWH�DQG�LQVWDOO�WKH�VHFXULW\�PDQDJHU
������6\VWHP�VHW6HFXULW\0DQDJHU�QHZ�50,6HFXULW\0DQDJHU����
������VHFXU0DQ� ���
��`
��6WULQJ�VHUYHU6WU� ��UPL�������VHUYHU+RVW���������VHUYHU1DPH�
��0HVVDJH�DQVZHU�
��WU\�^
������ILQG�VHUYHU��VHUYHU1DPH���
����$FFHVV�VHUYHU� ��$FFHVV�1DPLQJ�ORRNXS�VHUYHU6WU��
����DQVZHU� �VHUYHU�DFFHVV�P��
��`
��FDWFK��([FHSWLRQ�H��^
����6\VWHP�RXW�SULQWOQ��&OLHQW��H[FHSWLRQ�RFFXUHG������H�JHW0HVVDJH����
����DQVZHU� �QHZ�0HVVDJH�P�LG��
����DQVZHU�DFW� ���
����DQVZHU�WH[W� ��50,�([FHSWLRQ���
��`
��UHWXUQ�DQVZHU�
`

FU\SW$V\P+\EULG��, the user still could configure which asymmetric and
symmetric algorithms would be used for the hybrid system, but he could not decide to
use pure symmetric or pure asymmetric encryption instead.

Fig. 7. Cryptographic core functions of the API

Fig. 8. An excerpt of the API

VHFXULW\

FRQILGHQWLDOLW\ LQWHJULW\ DQRQ\PLW\

KLGH HQFU\SW

V\PPHWULF DV\PPHWULF

V\PPHWULF DV\PPHWULF

VWHJDQRJUDSK\

K\EULG

PL[XQREVHUYD�

ELOLW\

K\EULG

FRQFHDO�6WULQJ�SODLQ7H[W�
GHFRQFHDO�6WULQJ�FLSKHU7H[W�

È Provides confidentiality. Different forms of encryption or exotic mechanisms like
steganography are used depending on the configuration.

FU\SW�6WULQJ�SODLQ7H[W�
GHFU\SW�6WULQJ�FLSKHU7H[W�

È En- and decryption (symmetric or asymmetric).

FU\SW6\P�6WULQJ�SODLQ7H[W�
GHFU\SW6\P�6WULQJ�FLSKHU7H[W�

È Symmetric en- and decryption.

FU\SW$V\P�6WULQJ�SODLQ7H[W��6WULQJ�UHFLSLHQW�
GHFU\SW$V\P�6WULQJ�FLSKHU7H[W�

È Asymmetric en- and decryption. The parameter is optional. If it is not provided, the
recipient (and the according key) is chosen from the current connection configuration. Pure
asymmetric encryption will be used only in rare occasions, hybrid encryption is used
instead.

FU\SW$V\P+\EULG�6WULQJ�SODLQ7H[W��6WULQJ�UHFLSLHQW�
GHFU\SW$V\P+\EULG�6WULQJ�FLSKHU7H[W�

È Asymmetric cryptography, explicitly hybrid.

HPEHG�6WULQJ�SODLQ7H[W��6WULQJ�FRYHU'DWD�
H[WUDFW�6WULQJ�VWHJR7H[W�

È Steganography - a rather exotic mechanism which can provide confidentiality.

Further parts of the API deal with key exchange, certificates and secure storage
(local to the application as well as in the central configuration).

4 Application example: Teleshopping

As an evaluation example we chose an integrated teleshopping scenario. There are two
main applications which are important: a catalogue system and an electronic payment
system (which will be an on-line system like ecash [ecash]). This brings at least three
parties into action: a customer, a merchant and a bank.

Imagine the following scenario:
Merchant M offers videotapes of different categories, Customer C can browse a

catalogue, order tapes and pay with electronic cash. Figure 9 shows excerpts of their
application configurations considering the transactions <request catalogue>
and <sending catalogue>.

Fig. 9. Application configuration of customer C and merchant M

In the proceeded negotiation phase 1 (compare Chapter 3.2, Figure 5), customer C
and merchant M agreed on the security requirements confidentiality, accountability
and integrity.

FXVWRPHU�DSSOLFDWLRQ�FRQILJXUDWLRQ
DSSOLFDWLRQ�WHOHVKRSSLQJ

WUDQVDFWLRQ��UHTXHVW�FDWDORJXH!
FRQILGHQWLDOLW\ \HV '(6�&%&

'(6�2)%
DQRQ\PLW\

VHQGHU \HV DQRQ\PL]HU
0L[

UHFLSLHQW QR
FRPPXQLFDWLRQ �

DFFRXQWDELOLW\ QR 56$
LQWHJULW\ \HV 56$

WUDQVDFWLRQ��VHQGLQJ�FDWDORJXH!
FRQILGHQWLDOLW\ \HV '(6
DQRQ\PLW\

VHQGHU QR
UHFLSLHQW \HV DQRQ\PL]HU

0L[
FRPPXQLFDWLRQ �

DFFRXQWDELOLW\ \HV 56$
LQWHJULW\ \HV 56$

PHUFKDQW�DSSOLFDWLRQ�FRQILJXUDWLRQ
DSSOLFDWLRQ�WHOHVKRSSLQJ

WUDQVDFWLRQ��UHTXHVW�FDWDORJXH!
FRQILGHQWLDOLW\ �
DQRQ\PLW\

VHQGHU QR
UHFLSLHQW QR
FRPPXQLFDWLRQ �

DFFRXQWDELOLW\ \HV '66
56$

LQWHJULW\ \HV '(6�&)%
'66
56$

WUDQVDFWLRQ��VHQGLQJ�FDWDORJXH!
FRQILGHQWLDOLW\ QR
DQRQ\PLW\

VHQGHU QR
UHFLSLHQW QR
FRPPXQLFDWLRQ �

DFFRXQWDELOLW\ \HV '66
56$

LQWHJULW\ \HV '(6�&)%
'66
56$

Fig. 10. Negotiation phase 2 for the teleshopping scenario

Figure 10 shows the protocol steps of negotiation phase 2. For all three security
requirements, both participants prefer a distinct mechanism, e.g. DES-CBC and DES-
CFB for confidentiality. Therefore the negotiation of customer C automatically
generates the new proposal PC’ considering the offer from merchant M. Our example
describes that they agree on using DES in CBC mode to encrypt the transaction
<request catalogue> and RSA for accountability and integrity of both
transactions. Figure 11 shows the resulting connection configuration.

Fig. 11. Connection configuration of customer C and merchant M

&XVWRPHU�& 0HUFKDQW�0

JHQHUDWH3URSRVDO JHQHUDWH3URSRVDO

3
&
� ^�UHTXHVW�FDWDORJXH�

FRQILGHQWLDOLW\�^'(6�&%&��'(6�2)%`��
�UHTXHVW�FDWDORJXH��DFFRXQWDELOLW\�^56$`��
�UHTXHVW�FDWDORJXH��LQWHJULW\�^56$��'(6�2)%`��
�VHQGLQJ�FDWDORJXH��DFFRXQWDELOLW\�^56$`��
�VHQGLQJ�FDWDORJXH��LQWHJULW\�^56$`�������`

3
&
��DFFHSW

DFFHSW
FKHFN3URSRVDO

3
0
� ^�UHTXHVW�FDWDORJXH�

FRQILGHQWLDOLW\�^'(6�&)%��'(6�&%&`��
�UHTXHVW�FDWDORJXH��DFFRXQWDELOLW\�^'66�56$`��
�UHTXHVW�FDWDORJXH��LQWHJULW\�^'(6�&)%��'66��56$`��
�VHQGLQJ�FDWDORJXH��DFFRXQWDELOLW\�^'66��56$`��
�VHQGLQJ�FDWDORJXH��LQWHJULW\�^'(6�&)%��'66��56$`��
����`

3
&

3
0

FKHFN3URSRVDO

FKHFN3URSRVDO

JHQHUDWH3URSRVDO

3
&

� ^�UHTXHVW�FDWDORJXH��FRQILGHQWLDOLW\�^'(6�&%&`��

�UHTXHVW�FDWDORJXH��DFFRXQWDELOLW\�^56$`��
�UHTXHVW�FDWDORJXH��LQWHJULW\�^56$`��
�VHQGLQJ�FDWDORJXH��DFFRXQWDELOLW\�^56$`��
�VHQGLQJ�FDWDORJXH��LQWHJULW\�^56$`�������`

FXVWRPHU�&�±�PHUFKDQW�0�FRQQHFWLRQ�FRQILJXUDWLRQ
DSSOLFDWLRQ�WHOHVKRSSLQJ

WUDQVDFWLRQ��UHTXHVW�FDWDORJXH!
FRQILGHQWLDOLW\ \HV '(6�&%&
DQRQ\PLW\

VHQGHU QR
UHFLSLHQW QR
FRPPXQLFDWLRQ �

DFFRXQWDELOLW\ \HV 56$
LQWHJULW\ \HV 56$

WUDQVDFWLRQ��VHQGLQJ�FDWDORJXH!
FRQILGHQWLDOLW\ QR
DQRQ\PLW\

VHQGHU QR
UHFLSLHQW QR
FRPPXQLFDWLRQ �

DFFRXQWDELOLW\ \HV 56$
LQWHJULW\ \HV 56$

We chose this scenario because it has numerous features we would like to evaluate
our security platform with, such as:
− multiple parties with different interests,
− needs for confidentiality and authenticity,
− desire to stay anonymous in certain actions,
− contracts which have to be fulfilled and can be checked by third parties,
− different levels of security (the information about the account standings does not

necessarily have to be secured as much as electronic money itself, for instance).

5 Experiences and Conclusions

Our work attempted to demonstrate that multilateral security is a valuable extension to
the standard centralized approach to security in distributed systems. According to
current experiences, this concept is also accepted by people unfamiliar with the field
of security in information systems [MüPf_97]. Moreover, we have shown that generic
platform support for multilateral security is possible.

Particular experiences with the conceptual approach are as follows. (1) The selected
object-oriented design and implementation has proven to be a valuable approach for
organizing and presenting security mechanisms. (2) As opposed to lower-level
facilities such as sockets or RPC (Remote Procedure Call), object interactions with
Java RMI are a powerful and flexible method to implement distributed interactions as
found within our negotiation protocols. (3) Based on the Java implementation,
integration of existing mechanisms, also provided in other programming languages
such as C, was relatively easy. This is of particular importance due to the wide
availability of basic security implementations, for example for supporting
confidentiality or integrity. (4) Finally, it was possible to implement a concrete
application with multilateral security features easily by exploiting our basic platform.
Generic support will prove even more important when addressing a wide field of
different applications that may at least partially share security mechanisms and
negotiation protocols.

Future work will focus on the implementation of such alternative applications;
possible areas might be extended teleshopping / electronic market scenarios or
dedicated teleworking facilities. Moreover, the platform itself will be enhanced at the
implementation level, for example by integrating further security libraries, by
extending the negotiation protocols and by providing additional management tools.
Rather specific security facilities such as mixes [Chau_81] for anonymity might also
be imbedded. Furthermore, a concept of so-called transforming agents has been
developed and will be further refined; such agents act as mediators between users with
heterogeneous roles and requirements in case they are not able to completely agree to
a common set of security mechanisms.

References

Chau_81 David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 24/2 (1981) 84-88

CORB_97 Security, Transactions,...and More, 97-07-04
See: http://www.omg.org/corba/sectran1.htm

Cryp_97 Cryptix - Cryptographic extensions for Java.
See: http://www.systemics.com/software/cryptix-java/index.html

DCE_92 Open Software Foundation: Introduction to OSF TM DCE. Prentice Hall, Englew.
Cliffs, 1992.

Ecash DigiCash: Solutions for Security and Privacy.
See: http://www.digicash.com/index_e.html

Gehr_94 M. Gehrke: Eine Sicherheitsarchitektur für kooperative und offene Umgebungen.
Dissertation. Berichte der GMD Nr. 239, R. Oldenbourg Verlag, 1994

Java_97 Java Security, 19.11.97.
See: http://www.javasoft.com/security/

Kran_96 A. Krannig: „PLASMA - Platform for Secure Multimedia Applications“.
Proceedings: Communications and Multimedia Security II, Essen, 1996

MüPf_97 G. Müller, A. Pfitzmann (Hrsg.): Mehrseitige Sicherheit in der
Kommunikationstechnik: Komponenten, Verfahren, Integration. Addison Wesley,
Bonn 1997.

PLASMA „PLASMA - Platform for Secure Multimedia Applications“. In: DeTeBerkom:
Security - a Cornerstone of the Information Society
See: http://www.deteberkom.de/projekte/texte/Sec.eng.html

SSL The SSL Protocol, Version 3.0, 03/1996;
See: http://home.netscape.com/engl/ssl3/3-SPEC.HTM

StWi_97 S. Staamann, U. Wilhelm: CORBA as the Core of the TINA-DPE: A View from the
Security Perspective. Object World Frankfurt '97, special track Distributed Object
Computing in Telecommunications (DOCT'97), Frankfurt a.M., Germany, October
7-10, 1997.

Wiew_96 E. Wiewall: „Secure Your Applications with the Microsoft CryptoAPI“. In:
Microsoft Developer Network News, 5 (1996) 3/4, 1

WSWZ_97 U. G. Wilhelm, S. Staamann, G. Wolf, J. Zöllner: "Sicherheit in CORBA und
TINA". In: G. Müller, A. Pfitzmann (Hrsg.): Mehrseitige Sicherheit in der
Kommunikationstechnik: Komponenten, Verfahren, Integration. Addison Wesley,
Bonn 1997.

