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Abstract

We present the system architecture and a prototype of Perseus, a secure operating system

focusing on personal security management. Nevertheless Perseus allows users to use their

favourite applications in a convenient, known way. It is built upon a trusted computing

base that is small enough to be formally veri�ed and evaluated according to the Common

Criteria or ITSEC. The design includes the services necessary to support post-purchase

installation of secure applications by the user. It is �exible enough to run on a wide range

of hardware platforms, which allows PCs or PDAs to be used as general-purpose trusted

devices. To support a common binary interface the Perseus system acts as a host that runs

an existing operating system as one application (client OS). Moreover, by using the client

OS judiciously to perform non-critical tasks, the size of the secure kernel can be signi�cantly

reduced compared to a stand-alone secure system.

1 Motivation

The advent of e-commerce, e-society, and e-

citizenship has brought about the general need

for end-user systems that can guarantee au-

thenticity, integrity, privacy, anonymity, and

reliability. While research on protocols, cryp-

tography, languages, user interaction, etc. has

provided solutions to a wide range of security

related problems, all these solutions depend

upon the proper functioning of the underlying

system. To ensure such proper functioning, es-

pecially in a potentially adversarial setting, the

need for secure underlying systems is clear.

Existing operating systems lack mecha-

nisms to support security policies which are

su�ciently easy to be maintained by any user,

who likely is not a security professional. In ad-

dition to architectural insecurity and the inher-

ent insecurity resulting from complexity, com-

mon operating systems require uniformly per-

fect and attentive system administration skills

and will nevertheless not e�ectively protect in-

dividual users from executing malicious code.

Recent examples of application attacks are

the VBS/Loveletter1 and the Melissa virus2

which take advantage of conceptual security

holes of common applications to create signi�-

cant damage.

Users execute foreign applets on their sys-

tem and install software packages provided by

unknown (and potentially malicious) parties

without being able to decide whether their ac-

tions are security relevant or not. Applica-

1Estimated damage: $4-12 billion in losses in as many as 20 countries [1].
2The ICSAs Tippett estimated that Melissa infected about 1.2 million computers and 53,000 servers at 7,800

North American companies that had at least 200 PCs, and it cost between $249 million and $561 million to �x

(www.computer.org).
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tions such as browsers act upon complex data

sets, such as web pages, coming from untrusted

sources. At the same time, users wish to use a

single system for a wide range of purposes re-

quiring high levels of security and yet belonging

to di�erent domains: �nancial, medical, profes-

sional, social, and personal. The open ended

nature of our lives requires an open system.

As will be discussed in Section 2 security

tools are an incomplete solution if the underly-

ing components, especially the operating sys-

tem, do not work correctly [6, 17]. We thus

aim to implement a minimum security plat-

form that ful�lls all security requirements to

protect users and their data from malicious

code. We keep security-related components

small enough to enable evaluation, based for

example on the Common Criteria [18] or IT-

SEC, and in a second step formally prove cor-

rectness. The Perseus architecture provides

an environment to, e.g., create signatures se-

curely without expensive hardware modi�ca-

tions. Additionally, it supports a client operat-

ing system (client OS) such as Linux or Win-

dows to support mainstream applications.

The structure of this paper is as follows:

The next section illustrates widespread secu-

rity problems of common operating systems

and builds a basis for Section 3 which presents

security requirements to prevent those kind of

attacks. Section 4 compares the Perseus ap-

proach and other ones that also try to build

secure systems. Sections 5 and 6 present con-

cept and design of security-related components,

and in Section 7 a more detailed overview of

the Perseus architecture is given. Finally, Sec-

tion 8 gives a summary and points out further

development steps.

2 Widespread Security Flaws

This section discusses the widespread, yet er-

roneous, belief that use of tools such as PGP,

SSL, S/MIME or smartcards alone provides ad-

equate security. We illustrate six scenarios that

bypass these mechanisms by exploiting security

�aws or architectural vulnerabilities of current

operating systems. These scenarios provide a

basis for a list of security requirements that

have to be provided by secure operating sys-

tems, outlined in Section 3.

2.1 Mutual Protection of Applica-
tions

Common operating systems do not provide ad-

equate mechanisms to protect di�erent appli-

cations from one another. Thus malicious code

(e.g., viruses, or Trojan Horses) is able to act

with the full rights of the person executing

them. Games have full access to �nancial infor-

mation, �nancial programs have full access to

medical information, and so forth. Malicious

programs and data3 are able to read, mod-

ify, and infect other programs and data. Virus

scanners help diminish the e�ect of viruses but

do not address the larger and more di�cult

problem of malicious software in general. Also,

they typically only detect well-visible malicious

code and are, of course, only reactive. But

actually what is needed are proactive security

mechanisms that are able to prevent installa-

tion of malicious code, because we must expect

that future malicious code will be less "noisy",

i.e. Trojan horses may attack single individuals

or companies, without replicating themselves,

and possibly even delete themselves, so that

they will not easily be discovered by scanners.

2.2 Installation/Updates

It is very easy to attack a system by o�ering

new applications, bug-�xes, or device drivers

that come with a Trojan Horse, because there

are no common mechanisms that guarantee

correctness or limit application rights to the

bare minimum needed.

Existing code signing mechanisms from

Java or Active-X may allow users to determine

where code came from but

� greatly restrict the class of software that

can be executed, because they make it

impossible to execute non-trustworthy

code for convenience, inspection or just

fun

� assume that non-malicious implies invul-

nerable, and

3Embedded macro and scripting languages increasingly blur the distinction between programs and data.
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� require users to make decisions about so-

cial aspects of trust (these are generally

more di�cult than technical aspects).

2.3 Protected Paths

Another problem is the lack of mechanisms

that allow users to realize which application

they are communicating with (application au-

thentication). This makes it very easy for mali-

cious applications to deceive users, e.g., by dis-

playing a faked dialog to enter a password [27].

Already Gasser proposed in [6] that a security

kernel has to provide additional information to

allow users to verify displayed contents to de-

tect, faked dialogs for example.

A widespread approach to increase the se-

curity of existing computer systems uses smart-

cards or other trusted tokens. The idea behind

this approach is to leave the operating system

insecure and con�ne critical data (e.g. a pri-

vate key) to a secure environment.

One problem of this mechanisms is that

there is no trusted interface between the se-

cure token and the user: the user has no con-

trol over what data is passed to the secure to-

ken [20]. It is thus possible for an attacker to

instruct the operating system to modify docu-

ments between the secure token and the user:

changing terms of a contract, generating bogus

payments, signing false work orders, etc.

Devices that provide a trusted interface,

e.g., a smartcard reader which comes with its

own display, are not suited for general purposes

and are unhandy. Smartcards with their own

user interface are costly, and if one uses mobile

phones as smartcard readers, it will be di�cult

to view normal business documents.

In addition to not being secure, a second,

more limiting, problem exists: the mere stor-

age and use of the private keys addresses only

a tiny fraction of the functionality requiring se-

curity. Secure entry and editing, reading of pri-

vate documents, and logging are all outside the

range of what is possible with a security token

no matter how tamper resistant it might be.

2.4 Insu�cient Document Formats

Regarding digitally signed business documents,

it is possible to maliciously alter the presen-

tation, and hence meaning, of documents in

many ways. General-purpose document for-

mats are (appropriately) designed with utility

rather than security in mind. This allows the

creation of documents that display in one way

in one environment and in a completely dif-

ferent way in another (so called smart docu-

ments). Even document formats not o�ering

logical directive often display di�erently on dif-

ferent platforms, with di�erent revisions of the

software, with di�erent system con�gurations,

etc.

2.5 The Human Factor

The majority of users are not experts in com-

puter administration or security (nor should

they need to be). It is di�cult � even for

experts � to predict the complete set of con-

sequences of any system change. Thus it is

very di�cult to decide whether a requested sys-

tem modi�cation is security relevant. An ex-

ample is the seemingly harmless installation of

a new font; this is security critical because it

may change a contract for $1,000,000 to one for

¿1,000,000.

2.6 Unsuitable Hardware

Even if the operating system is implemented

and con�gured perfectly, it is possible to bypass

the system security if direct hardware access is

permitted to applications (as is often done for

performance reasons). For example, an appli-

cation with permission to access the harddisk

controller is able to alter every memory address

by using direct memory access (DMA) without

going through the normal operating system ac-

cess checks. This is clearly an enormous secu-

rity hole.

3 Security Requirements

The preceding section has presented some ex-

ample scenarios that show how easy it is to at-

tack existing operating systems, as long as they

do not provide adequate security concepts. We

will now discuss a selection of fundamental se-

curity requirements that are essential to pre-

vent those or similar attacks.
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3.1 Secure Platform

It is a paradigm that security cannot be guar-

anteed without trusting at least one compo-

nent. Thus, if a secure system shall execute

potentially untrusted applications users have

to trust at least some security-critical compo-

nents. The smallest set of components users

have to trust is generally called secure plat-

form, secure kernel or trusted computing base

(TCB). Obviously an operating system's secure

platform has to be as small as possible to re-

duce the probability of faulty implementations

and �awed assumptions.

3.2 Protected Domain

As long as untrustworthy or potential-incorrect

software is used, the secure platform has to pro-

vide a mechanism to protect information of dif-

ferent subsystems from each other. It must,

of course, protect itself against unauthorized

modi�cation. If such mechanisms are not sup-

ported by the hardware (e.g., memory protec-

tion mechanisms) interpretation of untrusted

subsystems (e.g., by using a virtual machine)

is the only protection mechanism. Because it

seems impossible to enforce complex cohesions

of trust using separated protected domains as

provided by virtual machines and because vir-

tual machines are very ine�cient (especially

untrustworthy applications such as games of-

ten require the most resources) we have to as-

sume that the underlying hardware supports at

least one protection mechanism. This mecha-

nism protects both application code and data,

to prevent attacks as outlined in Section 2.1.

3.3 Trusted Path

A trusted path is a mechanism allowing users

to directly communicate with a speci�c subsys-

tem and that cannot be altered or bypassed. If

trusted paths are not o�ered by the TCB then

security cannot be guaranteed.

Thus the TCB has to provide its own

trusted communication path and use it to

give users additional information which help to

check the integrity of the displayed informa-

tion. The simplest version of such a communi-

cation path has been suggested by Gasser [6]:

a separated LED which indicates whether the

user is communicating with the TCB. Clearly

this solution is not su�cient for our purposes,

because the trustworthiness of applications is

context dependent and cannot be enforced by

disjoint or hierarchical trust compartments.

Additionally, to guarantee integrity and

con�dentiality of inter-process communication

(IPC) the TCB has to provide a protected com-

munication channel between subsystems.

3.4 Access Control

To protect di�erent applications from each

other and to make it impossible for malicious

applets or applications to obtain and then leak

information, the system must prevent unau-

thorized manipulation of user data. It must

also enforce a system-wide and con�gurable ac-

cess control policy that enables �ne-granulated

and individual assignment of permissions to

di�erent compartments such as �nance, health,

game etc. Therefore, the system has to support

two di�erent access-control aspects:

1. Mandatory (system-wide) access control

providing a fail-save structure which en-

forces that the system remains in a secure

state4. The rules of this part of the ac-

cess control should be hardcoded or only

be maintainable by professionals.

2. Discretionary access control which is suf-

�ciently �ne granulated to allow an en-

tire whole range of security policies to be

de�ned. The system has to provide an

easyly understandable con�guration tool

that allows non-experts intuitively to de-

�ne their vague knowledge about trust

using a high-level language.

To be able to enforce a wide range of se-

curity policies the access control mechanisms

should be able to control every interaction be-

tween subsystems.

4What a secure state is has to be de�ned by the security policy.
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3.5 Installation/Update Service

To prevent users from compromising security of

their system by installing or updating applica-

tions, and to allow a given security policy to be

enforced, a trusted service has to observe these

operations. The service's task is to derive the

application's permissions depending on a given

security policy. Furthermore it has to choose

the destination compartment and update the

access control database. Because it is unlikely

that these operations can be performed with-

out user interaction, the service has to o�er an

easy to understand, high-level user interface.

3.6 Hardware Encapsulation

Section 2.6 mentions that subsystems which

can access the hardware are able to put the sys-

tem into an insecure state. Three approaches

exist to prevent attacks of this kind:

1. Allow only the TCB to access the hard-

ware.

2. Use only hardware that, e.g., does not

support DMA.

3. Improve the hardware design to prevent

security holes, e.g., by developing DMA

devices that use virtual memory.

We do not expect appropriate hardware im-

provements in the near future, thus we focus on

the �rst two options. If only the TCB is allowed

to access the hardware all device drivers have

to be part of the secure platform, which in-

creases its size (a SCSI driver has about 50000

lines of code) and makes veri�cation and eval-

uation harder. Also, there is no guarantee that

our driver is more stable than the one provided

by the client OS, except that our driver runs

within its own protected domain, which pre-

vents interferences with other subsystems.

To use only hardware devices that ful�ll

our security requirements seems to be another

promising solution. Especially if it is possible

to develop a TCB for a homogenous and well-

known hardware environment such as some sort

of PDA, it should be possible to keep the TCB

very small.

3.7 Veri�cation and Evaluation

State-of-the-art development of security-

related software should include a system spec-

i�cation, implementation, as well as the proof

that the implementation matches the speci�ca-

tion, to increases its reliability and trustworthi-

ness. Experiences of other projects [22, 25, 26]

have proven that is it possible to verify mid-

sized software using modern tools like PVS [5]

or VSE [2]. An important objective of the

Perseus project is to develop a completely ver-

i�ed security platform. To increase the assur-

ance level we aim to evaluate our speci�cation

and design of security-related components us-

ing the Common Criteria [18] or ITSEC.

In the cryptographic community a security

requirement is to provide an open design, and

in our opinion open source and open documen-

tation can further increase the trustworthiness

of software. Therefore we decided to make the

source code and design steps publicly available

and to put the code under the GNU Lesser

General Public License LGPL5.

3.8 Trusted Devices

Security can only be guaranteed as long as the

hardware is unmodi�ed. Personal mobile de-

vices such as PDAs or mobile phones are an

attractive platform, as they are most of the

time under control of their owner, which makes

malicious modi�cations more di�cult. Normal

PCs, however, are also important platforms as

important business documents are usually han-

dled on such machines and laptop owners, for

example, can exercise a certain control of their

hardware.

Furthermore, implementation on a mobile

device has the advantage that it provides a ho-

mogenous hardware environment (see Section

3.6). The functionality and speed of these de-

vices should su�ce, especially if cryptographic

operations such as key generation and signing

can be o�oaded into smartcards.

Our security analysis uncovers security-

related problems of existing hardware compo-

nents, therefore we will be able to suggest im-

provements to prevent those problems when de-

veloping a highly trusted hardware basis (see

5http://www.gnu.org/copyleft/lesser.html
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[12], where it is shown that it is possible to

prove correctness of a microprocessor, but at

the moment without considering security re-

quirements). This will make it possible to use

a completely veri�ed system in highly security-

critical applications.

3.9 User Friendliness

As explained in Section 2.5 it is very important

to consider user behaviour and knowledge when

designing secure systems. Another important

aspect is that security functions should work

transparently whenever possible. This prevents

that users will �nd a way to bypass them be-

cause of simplicity. Nothing is more danger-

ous than a security mechanism that has been

turned o� by the user.

Analysis of user behavior and evaluation of

current problems will enable us to develop a

system that provides a failsafe structure and

prevents users from inadvertently creating se-

curity holes.

4 Related Work

Because public awareness of the need for com-

puter security within the scienti�c community

is not new, di�erent approaches are used to de-

velop secure computer systems. This section

gives a short introduction to some these e�orts

and compares them with our approach.

4.1 New Systems

There are a few operating systems that have

been developed from scratch by considering

security requirements during all development

steps. Examples are the Birlix [11], Multics [4]

and Hydra [28] operating system, more recent

ones are the capability-based EROS [21] and

SPIN [3].

This approach provides the most �exible

way to obtain a secure operating system, but

requires huge resources because not only the

operating system but also all user applications

have to be developed from scratch. Moreover,

users have to learn new concepts, and devel-

opers have to acquire new interfaces and envi-

ronments. Thus the main disadvantage of this

approach is that compatibility with widespread

operating systems cannot be provided. This

may be a reason why a large number of secure

operating systems live in obscurity.

4.2 Improvements

Another common approach increases the secu-

rity of a common operating system by extend-

ing only some security functions. An incom-

plete list is RSBAC-Linux6 [19] and the Se-

cureLinux7 project. The advantages of these

approaches are obvious:

1. Compatibility with existing binary inter-

faces can be retained, allowing existing

applications to be reused.

2. Relatively few modi�cations of the oper-

ating system are necessary, the largest

part of the existing system remains un-

changed.

Note, however, that these approaches will

only increase the security of the system, they

will never provide high-level security without a

complete rewrite. Because the security of the

extentions depends on the correctness of the

entire kernel, including all drivers and mod-

ules (there is no protection mechanism between

them), it is improbable that these systems will

provide security on a high assurance level in

the future.

4.3 Microkernel Approaches

Some projects try to overcome the disadvan-

tages mentioned in Section 4.2 by developing

a multiserver operating system that provides a

binary-compatible interface to a common oper-

ating system. Examples are SawMill-Linux [7]

based on the L4 �-kernel interface and Flask

[23], a Mach-based system.

As far as we know these approaches neither

aim to keep security-related parts as small as

possible, nor do they provide mechanisms such

as trusted path or protected compartments.

6http://www.rsbac.de
7http://www.nsa.gov/selinux/index.html
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5 General Concepts

The concepts of the Perseus project are as fol-

lows: Based on a �-kernel that guarantees ele-

mentary security properties we build a minimal

multi-server-based security platform. On top

of this interface, a common operating system

(client OS) provides binary compatibility for

non-critical tasks. Security-related data and

functions are extracted to applications running

in parallel to the client OS, protected by mech-

anisms of the security platform. Figure 1 gives

an overview of the three main system compo-

nents:

The so-called red line separates potentially

untrusted subsystems and the secure platform,

which contains all security critical components

such as access control and/or information �ow

mechanisms, low-level drivers, the user inter-

face and smartcard reader support. All sub-

systems above the red line are under control

of these mechanisms and unable to bypass se-

curity mechanisms or put the system into an

insecure state. Therefore as long as insecure

devices are used (see Section 3.6), only subsys-

tems below the red line are allowed to access

the hardware directly.

The secure platform is built upon the hard-

ware platform (below the yellow line), which

has to provide at least one mechanism (see Sec-

tion 3.2) to protect di�erent tasks from one an-

other. Currently we assume that the hardware

works correctly, but we hope to be able to sup-

port veri�ed hardware in a later development

stage.

Because the platform provides only low-

level device driver support we keep it small

enough to be veri�able and to run on mobile de-

vices. It acts as a host system and executes one

or more tamed client operating systems (e.g.,

Linux, Windows or EPOC) on top of it. Of

course this approach does not increase the secu-

rity of the client OS, but by extracting security-

critical data from the client OS and providing

secure applications that run directly on top of

the secure platform, new security mechanisms

are able to protect those data and enforce their

own security policies.

The multi-server approach provides a �ex-

ibility that can be used to adapt the system

to di�erent hardware platforms and to use it

for various purposes. For example, running it

on a PDA will neither require services to access

harddisks nor persistency in a di�erent manner

because PDAs come with static memory that

keep the PDAs state even if the system is pow-

ered o�. However, another graphic driver is

required that takes into account the di�erent

screen size. Running a reduced version on a

simple PDA without client OS produces a ver-

i�ed smartcard reader which provides a graph-

ical display. In this case, the hardware does

not even have to provide a memory-protection

mechanism because only trusted software is

used.

The �exibility provided by the microkernel

also enables switching between di�erent service

implementations on demand, e.g., to replace a

fast signing service by an evaluated one. For

�exibility reasons we have to prevent depen-

dencies between the di�erent services. Thus

system services are de�ned by interfaces and

implementations communicate to each other

only via those interfaces using a naming service

that resolves requests [24]. To support updates

of interface de�nitions and to be able to distin-

guish di�erent services implementing the same

interface, each service is precisely identi�ed by

a triplet consisting of an interface, a version

and an individual name.

5.1 The Client OS

As initially mentioned, the Perseus system sup-

ports compatibility to a common ABI (Appli-

cation Binary Interface) by running another

operating system as client. This can, e.g., be

Linux or a Windows OS, which allows users to

use their favourite word processor in a conve-

nient, known way. Only security-critical op-

erations such as signing are performed by se-

cure applications, hence inaccessible to Tro-

jan horses or administrators. Regarding sign-

ing, the text would be displayed securely by

a trusted document viewer before it is signed.

For convenience, the signed text, and the origi-

nal Word processor text, can then both be sent

to the recipient.

For supporting a client OS, three alterna-

tives exist. First, the existing OS can be ported

to the interfaces provided by the secure plat-
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Figure 1: General design model of the Perseus architecture.

form, which has already be done with Linux,

but is a problem if the source code of the OS is

not available (e.g. Windows). Second, an exist-

ing virtual machine such as VMware8 or its free

clone Plex86 9 running on Linux can be used

to execute any machine-compatible operating

system. As this will slow down performance,

it will be more advisable to have a virtual ma-

chine directly running on the kernel, e.g., by

adapting Plex86 to the interfaces of the secure

platform.

third, to process critical data using unse-

cure applications, e.g., to write a text con�-

dentially, the user can execute several instances

of the client OS. For example, users can run

one instance to perform only critical applica-

tions such as a word processor to enter criti-

cal data or online banking software, and an-

other instance to for running untrustworthy

code such as web browsers, downloaded con-

tents or games.

In other words: with our approach, users

will have a possiblility to protect legacy appli-

cations. They also have an opportunity to run

arbitrary code. In the long run, they get an op-

portunity to have newly designed, highly secure

applications running in a secure compartment.

Of course, they should not re-open secure ap-

plications for running non-trustworthy scripts

etc. Such code should be con�ned to the surf-

and-play compartment.

6 The Secure Platform

This section gives a brief introduction into

security-related concepts of the secure plat-

form, outlined in Figure 2.

A security architecture is an abstract ma-

chine that describes overall security concepts of

the TCB to meet security-related requirements

and de�nes its behavior in an abstract manner.

The secure platform is an instance of the

security architecture containing all security-

relevant subsystems and enforces a given secu-

rity policy. Because subsystems of the secure

platform cannot be controlled by mechanisms

other than those provided by the hardware (if

they could they should not be part of the se-

cure platform), users have to trust them com-

pletely. Therefore the most important require-

ment is to reduce the complexity of the security

architecture and its subsystems to decrease the

possibility of errors and to facilitate later eval-

uation. The secure platform itself is divided

into di�erent parts, which will be explained in

the following subsections.

6.1 Hardware Abstraction

To keep the security platform as hardware in-

dependent as possible, the secure platform con-

tains a layer providing an abstract view to the

hardware. These are the �-kernel, which runs

8www.vmware.com
9www.plex86.org
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Figure 2: The di�erent layers of the secure platform.

on top of the CPU and provides an IPC mecha-

nism, an abstract view to pagetables called ad-

dress spaces, and mechanisms to manage tasks

and threads. A �-kernel is used rather than a

monolithic kernel because of its reduced func-

tionality and complexity. The latter is very

important for our purposes, because the oper-

ating system kernel is the most security-critical

part of an operating system (it can access every

data structure), and large, monolithic kernels

are more di�cult to maintain and to evaluate.

The �-kernel also has to provide a mes-

sage redirection mechanism (see Section 6.2)

to implement a reference monitor enforcing a

system-wide security policy. All other sub-

systems except the �-kernel are executed in

user-mode. Beside the �-kernel several ser-

vices provide an abstract view to hardware re-

sources such as interrupts, I/O ports and DMA

channels and one or more root memory pagers,

which provide a persistent view to the subsys-

tem's address space.

The use of persistent virtual-memory ad-

dresses has three important advantages: First,

it prevents having to implement an entire �le

system or database within the secure platform,

which would increase its complexity signi�-

cantly. Second, it provides a uni�ed view to

non-persistent systems such as desktop PC's

and persistent ones like PDA's. Third, this de-

sign guarantees that a task's data never leaves

its address space (e.g. to store it into a �le) and

therefore the protected domain. Because the

only way information can leave its protected

domain is IPC, we can guarantee that a secu-

rity policy can be enforced by controlling IPC.

6.2 Access Control

Because the granularity of the mandatory ac-

cess control has a service-based granularity and

because services are implemented by threads,

the reference monitor has to provide a thread-

based granularity. The policy de�nes a matrix

M which decides whether a thread t i has the

permission to access thread t j via IPC. The

implementation will depend on the redirection

mechanisms provided by the �-kernel. A more

9



general overview is given in [13], and Section

7.2 describes an implementation based on clans

and chiefs [16].

6.3 The Subsystem Manager

The subsystem manager is a service taht de-

rives the permissions of new applications based

on a given policy. Therefore users have to in-

voke this service to install or update applica-

tions. To prevent users from de�ning access

control rules to every application and to sim-

plify the policy, database applications are sep-

arated into di�erent classes, called compart-

ments. The security policy therefore de�nes

rules which are evaluated by the derivation

service to determine which compartment an

application is assigned to (e.g., game, health,

and bank) and which permissions are granted.

A mechanism used by the derivation service

could be certi�cates of trusted third parties

that guarantee correctness of the downloaded

content [14].

6.4 Device Drivers

To reduce the number of covered channels and

to prevent attacks as outlined in Section 2.6,

the secure platform has to contain drivers for

all devices that provide mechanisms that could

be used to disturb the security of the system.

These drivers also provide mechanisms to share

hardware between di�erent client applications,

e.g., the client OS.

6.5 User Interface

The user interface is a collection of highly

security-relevant device drivers, because it en-

capsulates accesses to user input and output

devices. It has an event-based structure, but

the implementation of core components de-

pends on the underlying hardware, screen size,

and available input devices provided by the de-

vice. This service also has to provide a pro-

tected path as de�ned in Section 2.3. Gasser

originally suggested to use a "secure attention

signal" for allowing the operator to tell between

secure and other applications. On a mobile de-

vice, this could be a diode, showing a green

light when a certi�ed application is running.

On a PC, a separate display could provide more

information, such as the name of the manu-

facturer, or information about the quality of

the signature under the code. Alternatively,

a protected area of the screen can be used for

this purposes (see for example Figures 5 and 6),

which should be no problem on large-sized PC

displays, but could be a problem on small-sized

PDAs or mobile phones.

7 Implementation

This section gives an overview of the �rst

Perseus prototype, outlined in Figure 3. The

modules have been implemented using the

C++ programming language.

7.1 Hardware Abstraction

We use the Fiasco [10, 15] �-kernel, which pro-

vides fast IPC, and a chief-and-clan mechanism

[16] to realize message redirection, on top of the

hardware.

As mentioned in Section 6.4 this layer also

provides services to manage access to hard-

ware resources. These are currently the re-

source manager RMGR, which comes with the

Fiasco distribution and controls access to inter-

rupts, manages capabilities to start new tasks

and acts as a (currently non-persistent) root

pager. Further services under development are

services to manage DMA channels and to ac-

cess I/O ports.

7.2 Access Control

Although currently no system-wide policy en-

forcement is implemented, this subsection will

describe how message redirection, as presented

in Section 6.2, could be implemented using

clans and chiefs.

To keep access control �exible we divide

it into a policy-independent access control

enforcement facility (ACEF) and a policy-

dependent decision facility (ACDF), as out-

lined in Figure 4, similar to object managers

presented in [23]. The ACEF, the application's

parent task called chief, intercepts all messages

sent by one of its child tasks (clan) to check

whether the IPC message is permitted. De-

pending on the security policy, the ACEF is

10
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able to enforce a system-wide policy by for-

warding the IPC to the system-wide ACDF,

or it can enforce its own policy by accessing its

own ACDF.

The security policy also decides whether ev-

ery application has to be protected by its own

ACEF or whether one ACEF controls several

applications (compartment). Because the de-

cision logic can be de�ned by software rules

within the ACDF we are able to support a wide

range of security policies. To ensure that com-

ponents outside the secure platform cannot by-

pass the ACEF, it controls its own interface

and protects the ACDF.

7.3 Public Interfaces

Three servers providing interfaces available to

client subsystems are currently implemented

[24]. These are a naming service that con-

verts interface names into thread IDs and vice

versa, and a user interface service that man-

ages access to the keyboard controller and the

console. It guarantees that no task except the

user interface is able to access the topmost line

of the console, which is used to display the

task ID and the given name of the application

(see Figure 5). Currently only two compart-

ments, trusted and untrusted, are supported.

The �-kernel , resourcemanager user authenti-

cation and signature service are trusted, and

Linux and its subtasks are untrusted. Because

data sent by the keyboard controller is only

forwarded to the client that controls the re-

maining part of the display, we can prevent

untrusted clients from spying security-relevant

keystrokes such as pass phrases.

The third service implemented is a router

service which provides network support by

routing TCP/IP packets between Linux and

trusted clients.

7.4 Clients

One client that runs on top of the secure plat-

form and provides a common ABI is L4-Linux,

a Linux kernel running on top of the L4 inter-

face [8, 9]. Its device drivers are modi�ed in

such a way that they use the public interfaces

presented in the preceeding section.

An authentication service (Figure 6) that

controls the user interface after the boot proce-

dure enforces the Perseus authentication mech-

anism. If authentication has been successful
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the authentication service transfers control of

the console to the Linux kernel, which is now

able to enforce its own authentication.

The third client is a key-generation and

signing service that can be accessed by a wrap-

per application available under L4-Linux to

generate new key pairs and to sign documents

using these keys. Because the key pair gen-

erated is stored within the signing service's

address space, the document to be signed is

copied into this address space and displayed

via the trusted ASCII editor to allow user ver-

i�cation. If the user agrees, the document is

signed and copied back into the Linux applica-

tion's address space. Given that no access con-

trol mechanism is implemented so far, secure

applications have to enforce their own security

policy by controlling incoming IPC messages

themselves. This is done by the signing ser-

vice using password-based protection. When-

ever a new key is created, the service requests

the user to enter a password which has to be

re-entered whenever a signature is being cre-

ated. Of course neither the keystrokes nor the

password itself can be accessed by the L4-Linux

kernel and its applications.

8 Conclusion

We have presented a system architecture of a

secure operating system that takes advantage

of the entire range of available Linux appli-

cations. Nevertheless its minimalistic security

kernel provides a high level of assurance be-

cause of its clarity. During all development

steps both desktop systems and mobile devices

have been considered, and its �exibility allows

the system to be adapted to end-user require-

ments. We separate access control mechanism

and decision logic to be able to support an en-

tire range of security policies, and the mod-

ular concept of the system architecture allows

changes of system services on demand. Because

the client OS's device drivers are replaced by

drivers that directly use the services of the se-

cure platform, there is no need to provide a

complete virtual hardware layer and therefore

we expect only a small loss of e�ciency.

Although the �rst prototype presented of-

fers an environment for testing new services,

considerable work still has to be done until a

secure end-user system can be provided. We

are optimistic that we will be able to evaluate

the security kernel or even formally prove the

correctness of the implementation.
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