
RZ 3089 (#93135) 12/14/1998
Computer Science/Mathematics 11 pages

Research Report

Optimistic Synchronous Multi-Party Contract Signing

N. Asokan1, Birgit Baum-Waidner2, Matthias Schunter3, Michael Waidner1

1 IBM Zurich Research Laboratory
Säumerstrasse 4
CH-8803 Rüschlikon
Switzerland
{aso,wmi}@zurich.ibm.com

2 Entrust Technologies Europe
CH-8301 Glattzentrum/Zürich
Switzerland
birgit.baum@entrust.com

3 Universität des Saarlandes
Im Stadtwald 45
D-66123 Saarbrücken
Germany
schunter@cs.uni-sb.de

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication.
It has been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside
publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties).

IBM
Research Division
Almaden · Austin · Beijing · Haifa · T.J. Watson · Tokyo · Zurich

Optimistic Synchronous Multi-Party Contract Signing

(Extended Abstract)∗

N. Asokan1, B. Baum-Waidner2, M. Schunter3, M. Waidner1

1IBM Zurich Research Laboratory, Rüschlikon, Switzerland
2Entrust Technologies Europe, Zürich, Switzerland

3Universität des Saarlandes, Fachbereich Informatik, Saarbrücken, Germany

Abstract

A contract is a non-repudiable agreement on a given contract text, i.e., a contract can be used to prove
agreement between its signatories to any verifier. A contract signing protocol is used to fairly compute a
contract so that, even if n − 1 of the n signatories misbehave, either all or none of them obtain a contract.

Optimistic contract signing protocols use a third party to ensure fairness, but in such a way that the
third party is not actively involved in case all parties are honest. Since no satisfactory protocols without any
third party exist, this seems to be the best one can hope for.

We present an optimistic multi-party contract signing protocol for synchronous networks. The construc-
tion is significantly more efficient than the only known asynchronous multi-party contract signing protocol,
and only 2-3 times more expensive than the trivial solution using an inline third party.

We show how to use multi-party contract signing to efficiently solve other atomicity problems securely,
in particular optimistic certified mail and optimistic fair exchange of signatures. We also outline a generic
construction for optimistic multi-party fair exchange.

∗This report supersedes IBM Research Report RZ 2892, November 1996 [AsSW296]. Our work was supported by the ACTS
Project AC026, SEMPER. However, it represents the view of the authors. SEMPER is part of the Advanced Communication
Technologies and Services (ACTS) research program established by the European Commission, Directorate General XIII.

1 Introduction

1.1 Contract Signing and Verifiable Commit

In order to achieve atomicity or to prepare dispute handling business transactions often demand secure,
verifiable agreement on how to proceed:

1. All parties involved must agree to either abort or to complete the transaction.

2. If the transaction is not aborted then the decision to continue must be verifiable by a third party (e.g.,
a court).

The parties in a business transactions are likely to not trust each other completely. Therefore the second
requirement should be satisfied even if n − 1 dishonest parties conspire against a single honest one.

As an example consider electronic payments: payer and payee have to agree to transfer the payment, or
to abort it. If the transfer happens the payer requires a proof that will be accepted by any third party.

Probably the best example is contract signing: After having negotiated the contract text all signatories
have to agree whether the contract shall become valid (signed) or not (failed). Any signatory must be able
to show a signed contract to any third party (called verifier in the following). To a large extent, contract
signing is actually the main tool to solve the general problem: Like an ordinary commit protocol [Lync96],
contract signing ensures agreement, with a safe default decision failed (∼= abort). But in addition it allows
each party to prove to any verifier (such as a court) an agreement on signed (∼= commit). Therefore one
might call contract signing also verifiable commit.

The most trivial contract signing protocol uses a trusted third party, T, that first collects all inputs and
then distributes the decision signed or failed [Rab183]. The protocol requires only 2n messages in two rounds
of communication, but as the third party has to be involved in all protocol executions it might easily become
a reliability and performance bottleneck.

Optimistic protocols avoid this bottleneck: Like the trivial protocol they depend on a third party to
ensure fairness. But they do this in a way such that this third party is not involved at all in the case where
all parties are honest – which hopefully is the most frequent case in real life. Already for the 2-party case no
satisfactory contract signing protocols without any third party exist. Thus, the optimistic approach seems
to be the best one can hope for.

Section 2 provides a concise definition of (optimistic) multi-party contract signing. In Section 3 we
will present the first optimistic multi-party contract signing protocol.1 Roughly speaking, the protocol
(Protocol 2) is only 2-3 times as expensive as the trivial protocol: In the worst case Protocol 2 requires
6n − 4 messages in 6 rounds, in the all-honest case at most 4n − 4 messages in 4 rounds.

The protocol runs on synchronous networks only. The only known multi-party contract signing protocol
for asynchronous networks is considerably more expensive: it requires O(n3) messages in O(n) rounds, or
O(n2) messages in O(n2) rounds [BaWa98].

In Section 4 we show how to use multi-party contract signing to efficiently solve other atomicity problems
securely, in particular optimistic certified mail and optimistic fair exchange of signatures. We outline a generic
construction for optimistic multi-party fair exchange. Optimistic two-party protocols for these problems were
proposed in [AsSW97, AsSW198, BaDM98, Mica97].

1.2 Related Work

So far most work on contract signing (and fair exchanges in general) has been focused on the 2-party case:
There are 2-party contract signing protocols that do not involve any third party, but necessarily they

introduce a non-negligible error. Basically the error probability is at least linear in the number of rounds
[BGMR90], and obviously this result holds for the multi-party case as well.

The first optimistic 2-party contract signing protocol was proposed in [BGMR90], the first communication
optimized ones in [AsSW97, PfSW98]. The first asynchronous 2-party protocol was described in [AsSW98,
AsSW198].

1 A preliminary version of Protocol 1 has been described in the technical report [AsSW296].

1

So far contract signing has not been used as verifiable commit. Generic optimistic 2-party fair exchange
protocols (in the sense of Section 4.4) were proposed in [AsSW97, AsSW98]. Optimistic 2-party protocols for
fair exchange of signatures or for certified mail have been described in [AsSW198, Mica97, BaDM98].

None of the optimistic 2-party protocols extends easily to the multi-party case. Some non-optimistic
multi-party fair exchange protocols were described in [KeGa96, FrTs98]. The first optimistic multi-party
fair-exchange protocols were described in a preliminary version of this paper [AsSW296], the first asyn-
chronous optimistic multi-party contract signing protocol is described in [BaWa98]. As already mentioned,
it is significantly less efficient than our construction in Section 3.

1.3 Model and Notation

Let P1, ..., Pn denote the parties directly involved in the contract signing, T the third party, and V any
verifier. For simplicity we do not distinguish between a party and his or her protocol machine. We simply
say a “party makes an input” (“receives an output”) if the corresponding human user makes the input to
(receives an output from) the corresponding machine. Each party is able to digitally sign messages, and to
verify signatures of any other party [DiHe76, GoMR88]. The signature on message m associated with PX is
denoted by signX(m).

Our contract signing protocol is structured in synchronized rounds of communication: Each party knows
when a certain round starts and ends. In each round each party can send a message to each other party,
and can process all messages received from all other parties. We further assume that messages sent between
honest parties are reliably delivered within the same round.2 This is the standard model of a synchronized
network [Lync96]. An implementation has to justify these assumptions by means of reliable and secure
message transport protocols, and reliable and secure clock synchronization.

We consider a static adversary who can a priori choose to corrupt a certain subset of all parties, i.e.,
gets full control over the behavior of those parties. The adversary can read all communication channels. We
assume that the adversary cannot forge signatures [DiHe76, GoMR88].

For most security requirements we will assume that up to n − 1 of all signatories might be corrupted.
Fairness will always require T be non-corrupted, while unforgeability of a contract can be guaranteed even
if T is corrupted.

The case where all parties are honest is called the all-honest case.

Disclaimer The following protocols are idealized, in several ways. In particular we omit all protocol and
message identifiers in messages, all public key certificates, all time stamps and time outs, and even parameters
such as the identity of T .

2 Definition of Multi-Party Contract Signing

Definition 1. (Multi-party Contract Signing)
A protocol for at least n + 1 parties P1, ..., Pn, V that satisfies the following conditions is called a Multi-

Party Contract Signing protocol, or just an MPCS.
An MPCS consists of two protocols, sign[P1, ..., Pn] and verify[Pi, V]. sign[] might involve an additional

party, T , in which case we call it an MPCS with third party.3 The machine V does not keep state between
different executions of verify[] but always starts with the state it had immediately after initialization of the
signature scheme. This models the fact that Pi shall be able to convince any verifier, i.e., V does not need
to have any a priori knowledge about the contract.

A party Pi who wishes to start sign[] enters (sign, tid , contr , decs). tid is a transaction identifier unique
for all executions of sign[]. contr is the contract to be signed.4 decs ∈ {sign, reject} denotes the user’s initial

2 Actually reliable communication between signatories is needed only to ensure that T is not involved if all parties are honest.
Otherwise it is sufficient if each signatory can reliably communicate with T .

3 verify[] never involves T , i.e., it is always a 2-party protocol only.
4tid and contr must be chosen before the protocol can be started. tid might be randomly chosen by one party, say, P1, and

proposed to all others. In case the set of parties involved is not clear anyway, tid also specifies this set.

2

decision to sign or to reject the contract. Upon termination sign[] produces an output (tid , contr , di) for Pi,
with di ∈ {signed, failed}. We will simply say “Pi decides di.”5

A player Pi who wishes to start verify[] with a verifier V enters (show, tid , contr). If the verifier, V ,
wishes to start verify[] as well it enters (verify, tid , contr) where tid , contr must be the same values as those
used by Pi.

Upon termination verify[] produces an output (tid , contr , dV) with dV ∈ {signed, failed} for V . We will
simply say “V decides dV on tid .” No output is produced by Pi.

The following conditions must be satisfied:

1. Correct Execution. If all parties Pi are honest and successfully started with (sign, tid , contr , decs =
sign) then all parties will decide signed.

2. Unforgeability of contract. If honest Pi never entered (sign, tid , contr , decs) with decs = sign then any
honest verifier that enters (verify, tid , contr) will decide failed. (Note that this does not assume an
honest T .)

3. Verifiability of valid contracts. If honest Pi decides signed on input (sign, tid , contr , decs), and later
inputs (show, tid , contr ,) and honest V inputs (verify, tid , contr) then V will decide signed.

4. No surprises with invalid contracts. If T is honest and honest Pi entered successfully (sign, tid ,
contr , decs) with decs = sign but decided failed then for any contrV no honest verifier V entering
(verify, tid , contrV) will decide signed.

5. Termination of sign[]. If T is honest then each honest Pi that enters sign will terminate in a limited
number of rounds.

6. Termination of verify[]. Each honest V that enters verify and each honest Pi that enters show will
terminate in a limited number of rounds. ♦

Definition 2. (Optimistic Protocol)
A protocol for n regular parties P1, ..., Pn and a third party T is called optimistic if in the all-honest case

the protocol terminates without T ever sending or receiving any messages. ♦

3 Synchronous Optimistic Contract Signing

The following protocol implements optimistic multi-party contract signing on synchronous networks.
In the all-honest case only two rounds of communication are needed: In the first round, each party who

wishes to sign the contract broadcasts a signed “promise to sign” (= message m1,i). In the second round
each party who received all n promises from the first round actually signs the contract and broadcasts its
real signature (= message m2,i). Obviously this works if all parties wish to sign. If at least one party does
not wish to sign this party will not send the signed promise, and thus no party will sign in Round 2. Thus,
in the all-honest case the protocol stops after 2 rounds.

If some party cheats some honest parties might not end up with a signed contract in Round 2, while some
others do. This inconsistency problem is solved by adding two more rounds to the protocol where everybody
who has n signed promises from Round 1 can get them converted into a valid contract, by T . If T issues an
affidavit it broadcasts it to all parties, in Round 4. Thus, each party who did not receive all n promises in
Round 1 waits until Round 4. If it receives an affidavit from T the decision is signed, otherwise failed.

On asynchronous networks, the last “otherwise” would not be effective, as a party could not decide
whether an affidavit was not sent, or just not delivered yet.

5T does neither get an input nor produces an output, as its behavior is completely determined by the protocol.

3

Protocol 1 (Synchronous Optimistic Multi-Party Contract Signing)

• Signing: Let c := (tid , contr).

1. (a) If Pi starts with decs = reject it decides failed and stops.
(b) Otherwise Pi sends message m1,i := signi(1, c) to all other parties.

2. Each Pi compiles M1 := (m1,1, ..., m1,n).

(a) If this succeeds and each m1,j is a valid signature signj(1, c) then Pi sends m2,i := signi(2, c)
to all other parties.

(b) Otherwise Pi waits for a message from T in Round 4.

3. Each Pi compiles M2 := (m2,1, ..., m2,n).

(a) If this succeeds and each m2,j is a valid signature signj(2, c) then Pi decides signed and stops.
(b) Otherwise, and if Pi has sent m2,i, it sends m3,i := signi(3, M1) to T .

4. If T receives at least one message m3,i in Round 3 which contains a full and consistent M1 then
T sends mT := signT (M1) to all parties, and each Pi receiving this decides signed. (Otherwise T
does not send anything, and is actually not even aware of this protocol run.)
Each Pi waiting for a message from T in Round 4 decides failed if none arrives, or signed in case
mT is received, and stops.

• Verification: Any verifier V accepts a contract if it sees a full and consistent M2 or an mT containing
a full and consistent M1. ♦

In the all-honest case, each party broadcasts at most 2 messages in 2 rounds. For n = 2 Protocol 1
becomes identical to Scheme 2 of [PfSW98]. Using their argument one can trivially conclude that Protocol 1
is round-optimal.

In any case, the protocol needs at most 4 rounds of communication. In the all-honest case 2n messages
are broadcast to n − 1 parties. If some parties cheat one has to add, in the worst case, n messages of type
m3,i, and one broadcast message from T .

If broadcast is implemented by sending individual messages this amounts to a total of 2n2 − 2n messages
in the all-honest case, and 2n2 messages in the worst case. The number of messages can be reduced to
4n − 4 messages in the all-honest case and 6n − 4 messages in the worst case, by adding two rounds to the
optimistic part: We already mentioned that reliability of communication between signatories is not essential
for security. Anyway, each party can cause the protocol to decide for failed by just setting decs := reject.
Thus it does not reduce security if the full information exchanges of the first two rounds are relayed via one
party, say P1:

Protocol 2 (Message-minimized Version of Protocol 1)
The protocol differs from Protocol 1 only in the way messages are sent. Round k, k = 1, 2, of Protocol 1,

is replaced by the following two rounds:

1. Pi sends mk,i to P1 only.

2. P1 collects Mk.

(a) If this succeeds, P1 sends Mk to all other parties.
(b) Otherwise P1 stops. ♦

Theorem 1
Protocols 1 and 2 are optimistic MPCSs for synchronous networks. ♦

Proof. Security-wise Protocols 2 and 1 are identical: the proofs are literally the same for both variants.
“Round” always corresponds to the rounds of Protocol 1.

4

• Correct execution, verifiability and termination are obviously satisfied.

• Strong unforgeability is given by the fact that a valid contract contains a signature from each party,
i.e., all parties must have agreed to sign.

• No surprises with invalid contracts. Assume an honest V accepts c as signed. If this happens because of
mT then T has distributed this message to all parties, and all honest parties decide signed. Now assume
V accepts because of M2, and consider some honest participant Pi. As M2 contains Pi’s signature from
Round 2, Pi received M1 in Round 1. If Pi received M2 in Round 2 it decides signed. Otherwise it
sends m3,i to T , which is necessarily answered by mT (as T is honest), and Pi decides signed. Thus we
know that if V accepts then any honest party has accepted the contract.

• Optimistic. Assume all parties are honest. If all parties start with decs = sign and consistent contracts
then T will not be involved and everybody decides signed in Round 2. If at least one party Pi starts
with decs i = reject then m1,i will not be sent, M1 will be incomplete, no other party can send m2,j ,
thus none will contact T , and in Round 4 all parties that started with decsi = sign will decide failed.
2

Remark 1. For n = 2, Protocol 2 is not message optimal: In the all-honest case, Protocol 2 needs 4 rounds
and 4 messages. In [PfSW98] it was shown that on synchronous networks 3 rounds and 3 messages are
sufficient. /

4 Applications

4.1 General Approach

In the following we will discuss three examples of how to construct optimistic protocols for certain other
multi-party problems, using MPCS as a building block. All these applications follow a simple pattern,
consisting of 3 phases:

1. All parties prepare the transaction but do not do any irreversible changes. In the all-honest case this
does not involve any third party.

2. An optimistic MPCS is used to sign a contract that exactly specifies the transaction. A party signs
only if Phase 1 succeeded.

3. (a) If the MPCS resulted in signed then the transaction is finalized. In the all-honest case this does
not involve any third party, but if some parties cheat, T can help to finish the transaction. This
help is subject to the existence of a valid, signed contract from Phase 2.

(b) If the MPCS resulted in failed then the transaction is aborted. This might require to undo some
of the effects of Phase 1.

In most examples Phase 3 does never involve T . In this case the pattern results in an asynchronous
protocol, provided all the sub-protocols — in particular the MPCS — run asynchronously as well.

In those applications where Step 3b might involve T , the third party needs to verify that the contract is
not signed before participating. The only way to do this is to ask all parties whether any of them can show
a signed contract. If none of them does T decides failed.

Remark 2. It is not possible to construct an asynchronous MPCS where a verifier can verify both signed and
failed: Consider a case where P1 is the only honest party, and the MPCS terminates with signed, without any
involvement by T . Nevertheless the n− 1 dishonest parties can simulate a protocol run where P1 refused to
participate. Necessarily, this simulated protocol run yields failed. Thus, not both results can be verifiable.

5

On synchronous networks failed is verifiable in the weak sense outlined above: a verifier can ask all parties
involved to show the contract, and if this does not happen, concludes it is failed.

This is a safe decision: If any party (honest or dishonest) has a signed contract, then all parties have a
signed contract, and T will receive at least one signed contract. Thus, T decides signed. If any honest party
decided failed then no party (honest or dishonest) has a signed contract, and thus T will decide failed. /

4.2 Optimistic Multi-Party Certified Mail

In two-party certified mail the sender P1 sends a message m to P2 in exchange for a receipt that can be
shown to any verifier V . P2 has to give the receipt blindly, i.e., independent of the contents of m.

There are several ways how to generalize this to the multi-party case:

• One natural multi-party version of certified mail is one-to-many certified mail: P1 sends a certified
mail m to P2, ..., Pn and requires to get a receipt from each recipient in exchange. Either P1 receives
all receipts, or none of P2, ..., Pn gets any information about m.

• Similarly one can define many-to-one certified mail, where each Pi (i ∈ {2, ..., n}) sends a certified mail
mi to P1, and requires to get a receipt from P1 in exchange. Either each sender Pi receives a receipt,
or P1 gets no information about any of the mi.

• One can also define more complicated communication patterns. In the “worst” case each party Pi has
a certified mail mi,j for each other party Pj , i 6= j, and either all n(n− 1) receipts are generated or no
information about any of the mi,j is leaked.

We can solve any of these problems using the approach sketched in Section 4.1. For simplicity we describe
it for one-to-many certified mail only. As an additional tool we need a public-key encryption scheme secure
against adaptive chosen-ciphertext attacks [DoDN91, CrSh98]. Only T needs a key pair. Let nil denote a
default message.

Protocol 3 (Optimistic One-to-many Certified Mail)

1. P1 encrypts (tid , m) under the public key of T , and sends the ciphertext to all parties. Call this
ciphertext cipher .

2. Each party receiving cipher and willing to accept it sets decs = sign. Otherwise decs = reject. We run
an optimistic contract signing protocol on (tid , contr = cipher , decs). If Pi, i = 1, ..., n, decides failed
in the contract signing protocol then it decides failed in the certified mail protocol and stops.

3. P1 sends m to all parties, and proves that (tid , m) was actually the cleartext corresponding to cipher
(e.g., by sending also all random coins used in computing cipher).

P1 decides accepted in the certified mail protocol. The receipt is the signed contract.

4. If Pi, i > 1, received a correct pair (tid , m) it accepts m and stops. Otherwise Pi shows the contract
(tid , cipher , decs) to T .

5. If T receives a signed contract (tid , cipher) from Pi then it tries to decrypt cipher . Otherwise the
request is ignored.

(a) If decryption succeeds and results in (tid , m) for the given tid then T sets mT :=
signT (tid , cipher , m).

(b) Otherwise T sets mT := signT (tid , cipher , nil).

T sends mT to Pi. ♦

6

Theorem 2 (Security of Protocol 3 – Informally)
Protocol 3 is a secure protocol for optimistic one-to-many certified mail. ♦

Proof. (Sketch)
We have to prove two properties: No information is leaked on m unless P1 has a receipt. And P1 cannot

get a receipt without revealing m:

• The only way to get information about cipher is from P1 or T – otherwise we could use Protocol 3 to
successfully attack the encryption scheme, which we excluded by assumption.

P1 reveals m only if he has a signed contract, i.e., a receipt.

T reveals m only if the condition in Step 5a is satisfied. This means the cleartext of cipher and the
signed contract agree on tid , i.e., correspond to the same protocol run. Thus, P1 was indeed the creator
of cipher , and agreed to exchange m for a receipt. Thus, T can safely decrypt cipher .

• Since the MPCS is assumed to be secure, the only way to get a valid receipt is if Phase 2 resulted in a
signed contract. Based on this contract each Pi will finally get the corresponding message, either from
P1 in Phase 3 or from T in Phase 5. 2

Remark 3. Using an asynchronous MPCS [BaWa98] the whole construction would run asynchronously. /

4.3 Optimistic Multi-Party Fair Exchange of Signatures

In a fair exchange of signatures each party Pi knows a signature si on a message mi. The messages m1, ..., mn

are known to all parties. At the end either all parties know all signatures, or none of them is revealed (i.e.,
the adversary’s chances to compute a signature on any of the mi has not been increased).

Protocols for the 2-party case were described in [AsSW198, BaDM98]. In [AsSW198] it was shown how to
efficiently and fairly exchange signatures from a large class of schemes, including DSS and RSA. The key
tool for these protocols is verifiable encryption of signatures [Stad96], in the variant defined in [AsSW198]. In
principle this is an ordinary public key encryption scheme with an additional property: Let ET (x) denote
the encryption of x under T ’s public key. Let A and B be two parties. A knows a signature s on message
m, and a string w. B knows message m and string w. Let c := ET (s, w). Verifiable encryption allows A to
prove to B that c actually includes a signature on m, and string w, without revealing s.6

Multi-party fair exchange of signatures can be used to implement multi-party contract signing with the
nice property that the application can demand how a “signed contract” shall look like (which is called “non-
invasive contract signing” in [AsSW98, AsSW198]). For instance, it might be most natural to say that the
contract on m shall be any vector of n valid signatures: (sign1(m), ..., signn(m)), where each Pi is free to
select whatever signature scheme suits him or her best. The protocols in Section 3 would not support this
requirement, as they define a contract to be either M2 or mT .

Using verifiable encryption of signatures we can implement multi-party fair exchange of signatures:

Protocol 4 (Optimistic Multi-Party Fair Exchange of Signatures)

1. Let string w be all information that describes the current exchange. This contains in particular tid ,
and for each Pi the message mi to be signed and the public key needed to test the expected signature
si on mi. w is known to each Pi.

Let si denote the signature by Pi on mi. Initially si is known to Pi only.
6 Saying that c contains an encryption of s is a slight idealization. In reality one first reduces knowledge of a signature to

knowledge of a single discrete logarithm x or of a single e-th root x, and then encrypts this x. B knows not just m but also gx

or xe, respectively [AsSW198].

7

Each party Pi sends a verifiable encryption ci = ET (si, w) to each Pj , and proves to each Pj that
this actually includes a signature si and w.7 Each party sets decs = sign if all these proofs succeed,
otherwise decs = reject.

2. We run an optimistic contract signing protocol on (tid , contr = w, decs).

3. If Pi decided signed in Phase 2, it sends si to all parties and waits for their signatures. If one such
signature, say sj, does not arrive, Pi can show the signed contract on w and the ciphertext cj to T .

Given a valid contract T decrypts cj and retrieves (sx, wx). If wx = w and sx is a signature on mx,
where mx is defined by w, then T sends sx to the requester.8 ♦

Theorem 3 (Security of Protocol 4 – Informally)
Protocol 4 is a secure protocol for optimistic multi-party fair exchange of signatures. ♦

We omit the proof of security for Protocol 4 from this extended abstract. On a high level it is very similar
to the one for Theorem 2. Note that each ciphertext ci contains the contract “text” w, which ensures that
T decrypts ci only in case the right contract is shown.

4.4 Optimistic Multi-Party Fair Exchange of Items

In this last section we will sketch a generic construction for multi-party fair exchange.
Informally, most items that could be fairly exchanged belong to one of the following classes [AsSW97,

AsSW98]: Let S be the sender of an item, and R the recipient.

• Revocable items have the property that the third party T can undo a transfer from S to R, on request
by S. For instance, several payment systems support revocability.

• Generatable items have the property that after a certain pre-processing step between S and R, the
third party can generate the item with R’s help, without involving S. In the pre-processing step S can
specify a condition that T can later check to distinguish between legitimate and fraudulent requests
for help by R.

For instance, verifiable encryption made signatures (respectively discrete logarithms and e-th roots)
generatable. The condition was that there must be a valid contract on w, signed by Pi.

• Forwardable items have two transfer protocols, one just between S and R, and a second one involving
S, R and T which ensures that T can verify the correctness of the transfer. We call that second transfer
protocol observable. We assume that transferring an item is idempotent.

Using this classification of items we can design a generic multi-party fair exchange protocol. For simplicity
we assume that each party has exactly one item that he or she wants to transfer. (Other communication
patterns can be supported in a similar way.) Let PR, PG, PF be the parties who wish to transfer revocable,
generatable or forwardable items, respectively. We assume |PR| + |PG| + |PF | = n and |PF | ≤ 1.

Protocol 5 (Optimistic Multi-Party Fair Exchange of Items)

1. Each party Pr ∈ PR transfers its item to all other parties. Each party Pg ∈ PG transfers those
information to all other parties that is necessary in case a recipient would need T ’s help in generating
Pg’s item. Each party checks whether all steps were performed correctly, and sets decsi accordingly.

2. We run an optimistic contract signing protocol on (tid i, contr i, decsi), where contr i describes exactly
what each party is supposed to send, and the information received so far.

7 In some verifiable encryption schemes the same ciphertext cannot be verified more than once. In this case Pi has to
generate n − 1 versions of ci, one for each party Pj .

8 Depending on the application the requesting party might have to prove that it actually participated in the protocol.

8

3. If Phase 2 ended with signed and PF = {Pf} then Pf transfers its item. If any party Pj does not
receive Pf ’s item it asks T for help. T asks Pf to transfer its item again, using the observable transfer
protocol. If this fails, T sends an abort message to all parties. (Otherwise everybody has Pf ’s item
now.)

4. (a) If Phase 2 ended with signed and T did not send the abort message in Phase 3 then all Pg ∈ PG

transfer their items. If any party Pj does not receive a generatable item then it generates it with
T ’s help. In order to get Pg’s item generated by T , Pj has to show a valid contract that is signed
by Pg. This contract, i.e., contr , must be sufficient for T to check that the condition set by Pg is
satisfied.

(b) Otherwise all parties Pr ∈ PR ask T to revoke the transfers of their items. This must be bound
to the fact that there is no signed contract. In order to check this T sends a request to all parties
involved to show a signed contract. If no party can show one, all transfers are revoked. ♦

Since we did not provide any definitions for the three types of items we omit the proof of security for
Protocol 5 from this extended abstract.

Intuitively the construction is secure as it exactly implements the pattern discussed in Section 4.1:

• No irreversible changes are made in Phase 1. The transfers of the Pr ∈ PR can be revoked. The
preparations of the transfers of the Pg ∈ PG reveal no information, by assumption.

• In Phase 2 either all parties agree to finalize the exchanges, or to abort them.

If they abort no information on the items is leaked, and T will not co-operate in the generation of any
item.

Otherwise T can complete all transfers of the Pg ∈ PG and can prevent all transfers of the Pr ∈ PR

from being revoked. The only transfer that cannot be enforced by T is the one by Pf ∈ PF , which is
taken care of in Phase 3.

• Phase 3 ensures that either all parties receive Pf ’s item, or the exchange is aborted.

(Obviously the construction of this phase works only for a single Pf , and would not work on an
asynchronous network.)

• Phase 4 is entered only if the items of all Pi ∈ PR ∪ PF are already transferred and the transaction is
not aborted (because the contract is signed in Phase 2 and was not aborted in Phase 3).

None of the revocable transfers will be revoked, as T can always correctly determine whether the
contract was signed successfully or not. (Obviously, this would not work on an asynchronous network.)

Each party Pi will receive the item of each Pg ∈ PG, either directly or with T ’s help, as Pi can always
show a valid contract which was not aborted in Phase 3.

Remark 4. Unless PR = PF = ∅ Protocol 5 works on synchronous networks only. /

5 Summary

We presented the first optimistic multi-party contract signing protocol for synchronous networks, and proved
its security.

In the worst case Protocol 2 requires 6n − 4 messages in 6 rounds, in the all-honest case at most 4n− 4
messages in 4 rounds. The trivial solution using an inline third party requires only 2n messages in 2 rounds,
but depends on the third party to be involved in each transaction.

It depends on the application which of the two approaches is more appropriate: If the all-honest case is
the most likely one, and if communication with T is relatively expensive, then the optimistic approach seems
to be most appropriate.

9

Our main application of multi-party contract signing is as a primitive for secure atomic transactions,
similar to distributed commit for ordinary atomic transactions. As an example we showed how to solve
several fair exchange problems using multi-party contract signing.

Acknowledgments: We thank Birgit Pfitzmann, Michael Steiner, and Victor Shoup for interesting discus-
sions.

References

[AsSW296] N. Asokan, Matthias Schunter, Michael Waidner: Optimistic Protocols for Multi-Party Fair
Exchange; IBM Research Report RZ 2892, IBM Zurich Research Laboratory, Zürich, November 1996.

[AsSW97] N. Asokan, Matthias Schunter, Michael Waidner: Optimistic Protocols for Fair Exchange; 4th
ACM Conference on Computer and Communications Security, Zürich, April 1997, 6–17.

[AsSW98] N. Asokan, Victor Shoup, Michael Waidner: Asynchronous Protocols for Optimistic Fair Ex-
change; 1998 IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press,
Los Alamitos 1998, 86–99.

[AsSW198] N. Asokan. Victor Shoup, Michael Waidner: Optimistic Fair Exchange of Digital Signatures;
Eurocrypt ’98, LNCS 1403, Springer-Verlag, Berlin 1998, 591–606.

[BaDM98] Feng Bao, Robert Deng, Wenbo Mao: Efficient and Practical Fair Exchange Protocols with Off-
Line TTP; 1998 IEEE Symposium on Research in Security and Privacy, IEEE Computer Society Press,
Los Alamitos 1998, 77–85.

[BaWa98] Birgit Baum-Waidner, Michael Waidner: Asynchronous Optimistic Multi-Party Contract Signing;
IBM Research Report RZ3078 (#93124), IBM Zurich Research Laboratory, Zürich, November 1998.

[BGMR90] Michael Ben-Or, Oded Goldreich, Silvio Micali, Ronald L. Rivest: A Fair Protocol for Signing
Contracts; IEEE Transactions on Information Theory 36/1 (1990) 40–46.

[CrSh98] Ronald Cramer, Victor Shoup: A practical public key cryptosystem provably secure against adap-
tive chosen ciphertext attack; Crypto ’98, LNCS 1462, Springer-Verlag, Berlin 1998, 13–25.

[DiHe76] Whitfield Diffie, Martin E. Hellman: New Directions in Cryptography; IEEE Transactions on
Information Theory 22/6 (1976) 644–654.

[DoDN91] Danny Dolev, Cynthia Dwork, Moni Naor: Non-Malleable Cryptography; 23rd Symposium on
Theory of Computing (STOC) 1991, ACM, New York 1991, 542–552.

[EvGL85] Shimon Even, Oded Goldreich, Abraham Lempel: A Randomized Protocol for Signing Contracts;
Communications of the ACM 28/6 (1985) 637–647.

[FrTs98] Matt Franklin, Gene Tsudik: Secure Group Barter; Financial Cryptography 1998, to appear.

[GoMR88] Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks; SIAM Journal on Computing 17/2 (1988) 281–308.

[KeGa96] Steven P. Ketchpel, Hector Garcia-Molina: Making Trust Explicit in Distributed Commerce Trans-
actions; 16th International Conference on Distributed Computing Systems,1996, IEEE Computer Soci-
ety, 1996, 270–281.

[Lync96] Nancy A. Lynch: Distributed Algorithms; Morgan Kaufmann, San Francisco 1996.

[Mica97] Silvio Micali: Certified E-Mail with Invisible Post Offices; presented at 1997 RSA Conference.

[PfSW98] Birgit Pfitzmann, Matthias Schunter, Michael Waidner: Optimal Efficiency of Optimistic Contract
Signing; ACM Principles of Distributed Computing (PODC), Puerto Vallarta, June 1998, 113–122.

10

[Rab183] Michael O. Rabin: Transaction Protection by Beacons; Journal of Computer and System Sciences
27/ (1983) 256–267.

[Stad96] Markus Stadler: Publicly verifiable secret sharing; Eurocrypt ’96, LNCS 1070, Springer-Verlag,
Berlin 1996, 190–199.

11

	Introduction
	Contract Signing and Verifiable Commit
	Related Work
	Model and Notation

	Definition of Multi-Party Contract Signing
	Synchronous Optimistic Contract Signing
	Applications
	General Approach
	Optimistic Multi-Party Certified Mail
	Optimistic Multi-Party Fair Exchange of Signatures
	Optimistic Multi-Party Fair Exchange of Items

	Summary

